Design Team: Example Structural Calculations

designteam

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Revisions:

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Introduction:

The following calculations are to size structural members for the new rear extension at

Calculations are prepared in accordance with the following Standards:

Weight of building materials	BS 648
Loading	BS 6399, BS-EN 1991
Structural concrete	BS 8110
Structural steel	BS 5950, BS-EN 1993
Structural timber	BS 5268, BS-EN 1995

Loading Data:

Timber Pitched Roof:

Dead Load

•	Tiles	0.75 kNm ⁻²	
•	Battens	0.05 kNm ⁻²	
•	Felt	0.05 kNm ⁻²	
•	Rafters	0.20 kNm ⁻²	
•	Ceiling/Services	0.15 kNm ⁻²	
	Total		(on slope)
	1.20 kNm ⁻² / cos (20	$0) = 1.28 \text{ kNm}^{-2}$	(on plane)
Imposed	Load	0.60 kNm ⁻²	
Dead Lo	<u>Timber Floor:</u> ad		
•	Boarding	0.15 kNm ⁻²	
•	Joists	0.20 kNm ⁻²	
•	Ceiling/Services	0.15 kNm ⁻²	
	Total	0.50 kNm ⁻²	
Imposed Load		1.50 kNm ⁻²	
Dead Lo	ad γ _{bric}	$_{\rm k}$ = 18 kNm ⁻³	

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Timber Stud Wall:

Dead Load

• Stud wall 1.00 kNm⁻²

Wind load on walls:

Imposed Load 0.70 kNm⁻²

Fire resistance:

Fire resistance period R = 30 min

Exposure to fire Exposed on more than one side

Soil bearing capacity: P = 91kPa

Note:

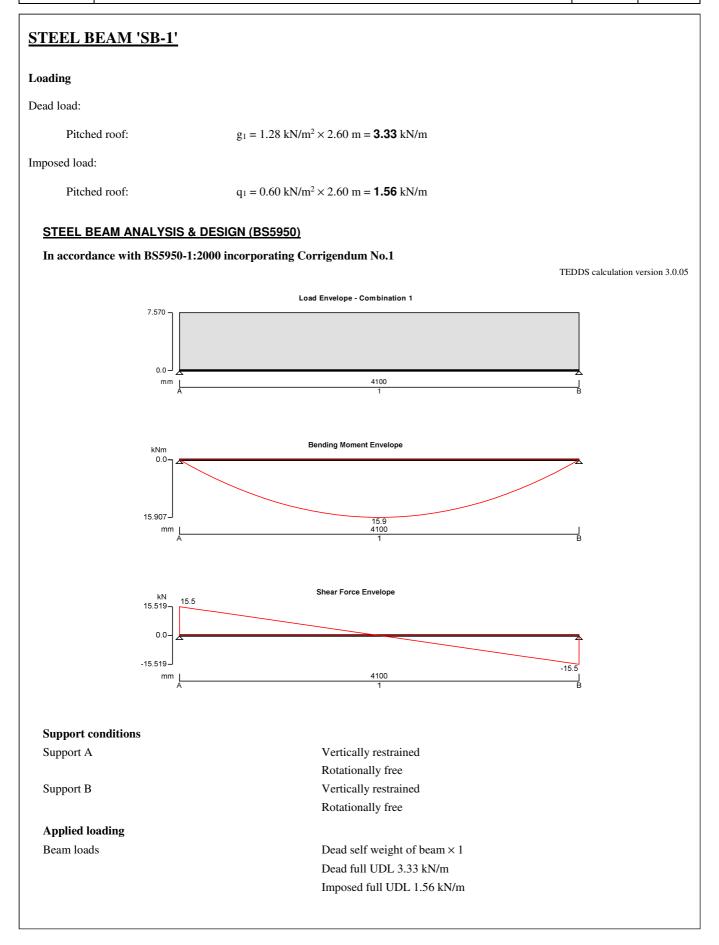
Calculations to be checked by local Authority before work commences. Client to ensure all of contractors' works on site to comply with and meet Approval of the relevant British Standards and the Local Authority including Building Control and Planning Departments. Maximum liability for these works is equal to the fee being paid.

Dimensions: Note that all dimensions shown on the drawings are indicative and should be checked prior to start of the works on site. It is the responsibility of the client to notify the Designer of any discrepancies. The same applies to the alignment of walls and general layouts. All existing foundations and lintels to be exposed to verify suitability and to be checked for adequacy and/or replaced or surrounded in 150mm concrete cover if necessary. Prior to commencement a trial hole and /or soil report/investigation and an inspection of any trees in the areas may be required.

Structural Calculations Loadings: We do not have access to any plans of building as they were originally constructed. Consequently structural calculations are based upon assumptions. The client should be aware that the calculations have limitations based upon the information forthcoming. We are not privy to the original construction details of the building from the time of its construction.

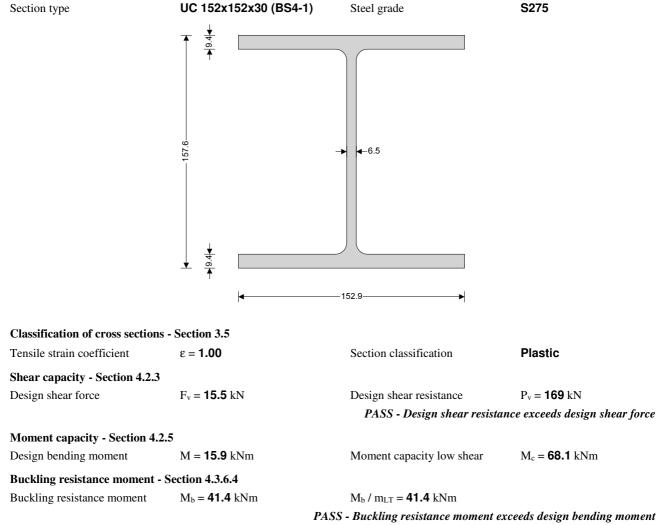
All Steel Beams to have minimum of 1/2hr Fire Resistance via 'Nullifire' Paint or 19mm Gyproc Plank tied with 1.6mm wire binding @ 100mm c/c and finished in Carlite Bonding 16mm thick. The dimensions of all steel sections required should be measured on site by the client (or their representative contractor or steelwork fabricator). Where the wall above is wider than the steel (supporting it) below there is the need to weld a 12mm thick plate to the top flange/s of the steels to ensure that the wall/steel interface are the identical width. All below ground steelwork must be concrete encased with minimum 100mm thickness.

Calo	c By	Project	Job No.	
Calo	c Date	Client	Page No.	Revision


TIMBER RAFTER 'T-1' TIMBER RAFTER DESIGN (BS5268-2:2002) TEDDS calculation version 1.0.03 20 degrees 255 **Rafter details** b = **47** mm Breadth of timber sections Depth of timber sections h = **150** mm s = **400** mm Single span Rafter spacing Rafter span L_{cl} = **2554** mm Clear length of span on slope Rafter slope $\alpha = 20.0 \text{ deg}$ C24 Timber strength class Section properties A = **7050** mm² Z = 176250 mm³ Cross sectional area of rafter Section modulus r = **43** mm I = 13218750 mm⁴ Radius of gyration Second moment of area Loading details Rafter self weight $F_i = 0.02 \text{ kN/m}$ Dead load on slope $F_d = 1.20 \text{ kN/m}^2$ Imposed snow load on plan $F_u = 0.75 \text{ kN/m}^2$ $F_p = 0.90 \text{ kN}$ Imposed point load **Modification factors** Section depth factor K7 = 1.08 K₈ = 1.10 Load sharing factor **Consider long term load condition** Load duration factor K₃ = 1.00 Total UDL perp. to rafter F = **0.474** kN/m $L_b = 5 \text{ mm}$ Leff = **2559** mm Notional bearing length Effective span Check bending stress Permissible bending stress $\sigma_{m_{adm}} = 8.904 \text{ N/mm}^2$ Applied bending stress $\sigma_{m_{max}} = 2.200 \text{ N/mm}^2$ PASS - Applied bending stress within permissible limits Check compressive stress parallel to grain

Permissible comp. stress $\sigma_{c_adm} = 5.848 \text{ N/mm}^2$ Applied compressive stress $\sigma_{c_max} = 0.330 \text{ N/mm}^2$ PASS - Applied compressive stress within permissible limitsCheck combined bending and compressive stress parallel to grainCombined loading check0.308 < 1PASS - Combined compressive and bending stresses are within permissible limitsCheck shear stressPermissible shear stress $\tau_{adm} = 0.781 \text{ N/mm}^2$ Applied shear stress $\tau_{max} = 0.129 \text{ N/mm}^2$ PASS - Applied shear stress within permissible limits

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision


Check deflection			
Permissible deflection	δ_{adm} = 7.677 mm	Total deflection	$\delta_{max} = 1.951 \text{ mm}$
		PASS - Total de	flection within permissible limits
Consider medium term load	condition		
Load duration factor	K ₃ = 1.25	Total UDL perp. to rafter	F = 0.739 kN/m
Notional bearing length	L _b = 8 mm	Effective span	L _{eff} = 2562 mm
Check bending stress			
Permissible bending stress	$\sigma_{m_{adm}} = 11.130 \text{ N/mm}^2$	Applied bending stress	$\sigma_{m_{max}} = 3.438 \text{ N/mm}^2$
		PASS - Applied bendin	g stress within permissible limits
Check compressive stress pa	rallel to grain		
Permissible comp. stress	$\sigma_{c_{adm}} = 6.978 \text{ N/mm}^2$	Applied compressive stress	$\sigma_{c_{max}} = 0.515 \text{ N/mm}^2$
		PASS - Applied compressiv	e stress within permissible limits
Check combined bending an	d compressive stress parallel to g	rain	
Combined loading check	0.390 < 1		
	PASS - Comb	ined compressive and bending stres	sses are within permissible limits
Check shear stress			
Permissible shear stress	$\tau_{adm} = 0.976 \text{ N/mm}^2$	Applied shear stress	τ _{max} = 0.201 N/mm ²
			ur stress within permissible limits
Check deflection			
Permissible deflection	δ _{adm} = 7.685 mm	Total deflection	δ _{max} = 3.054 mm
		PASS - Total de	flection within permissible limits
Consider short term load con	adition		
Load duration factor	K ₃ = 1.50	Total UDL perp. to rafter	F = 0.474 kN/m
Notional bearing length	$L_b = 8 \text{ mm}$	Effective span	$L_{\rm eff} = 2562 \text{ mm}$
Check bending stress		Liteeti te span	
Permissible bending stress	$\sigma_{m_{adm}} = 13.355 \text{ N/mm}^2$	Applied bending stress	$\sigma_{m max} = 5.280 \text{ N/mm}^2$
remissible bending suess			g stress within permissible limits
Charly compressive stress po	vallal to quain	11150 1122	8 511 655 <i>m</i> 11111 p c 1115516 1 c 111115
Check compressive stress pa Permissible comp. stress	$\sigma_{c_{adm}} = 7.965 \text{ N/mm}^2$	Applied compressive stress	$\sigma_{c_{max}} = 0.374 \text{ N/mm}^2$
r ennissible comp. suess			<i>e stress within permissible limits</i>
	J		
Combined loading check	d compressive stress parallel to g 0.449 < 1	grain	
Combined loading check		ined compressive and bending stres	ssos are within normissihle limits
Charles I. and the second	11155 - Como	incu compressive una benaing sires	sses are within permissible timus
Check shear stress	σ 1 170 N/?	Applied above -terror	σ – 0 200 Ν/ ²
Permissible shear stress	$\tau_{adm} = 1.172 \text{ N/mm}^2$	Applied shear stress PASS Applied shear	$\tau_{max} = 0.309 \text{ N/mm}^2$
		1 ASS - Appueu sneu	ar stress within permissible limits
Check deflection	δ _{adm} = 7.687 mm	Total deflection	$\delta_{max} = 4.174 \text{ mm}$
Permissible deflection			

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Load combinations			
Load combination 1		Support A	$Dead \times 1.40$
			Imposed \times 1.60
		Span 1	$Dead \times 1.40$
			Imposed \times 1.60
		Support B	$Dead \times 1.40$
			Imposed \times 1.60
Analysis results			
Maximum moment		M _{max} = 15.9 kNm	$M_{min} = 0 \text{ kNm}$
Maximum shear		$V_{max} = 15.5 \text{ kN}$	$V_{min} = -15.5 \text{ kN}$
Deflection		$\delta_{max} = 5.3 \text{ mm}$	$\delta_{\min} = 0 \ mm$
Maximum reaction at support A		$R_{A_{max}} = 15.5 \text{ kN}$	$R_{A_min} = 15.5 \text{ kN}$
Unfactored dead load reaction at supp	port A	R _{A_Dead} = 7.4 kN	
Unfactored imposed load reaction at	support A	$R_{A_{Imposed}} = 3.2 \text{ kN}$	
Maximum reaction at support B		R _{B_max} = 15.5 kN	R _{B_min} = 15.5 kN
Unfactored dead load reaction at supp	port B	R _{B_Dead} = 7.4 kN	
Unfactored imposed load reaction at	support B	$R_{B_{Imposed}} = 3.2 \text{ kN}$	
Section details			
Section type	C 152v152v3	0 (BS4-1) Steel grade	S 275

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Check vertical deflection - Section 2.5.2

 $\begin{array}{ll} \mbox{Consider deflection due to dead and imposed loads} \\ \mbox{Limiting deflection} & \delta_{\mbox{lim}} = 11.389 \mbox{ mm} \end{array}$

Maximum deflection	$\delta = 5.323 \text{ mm}$
PASS - Maximum deflectio	n does not exceed deflection limit

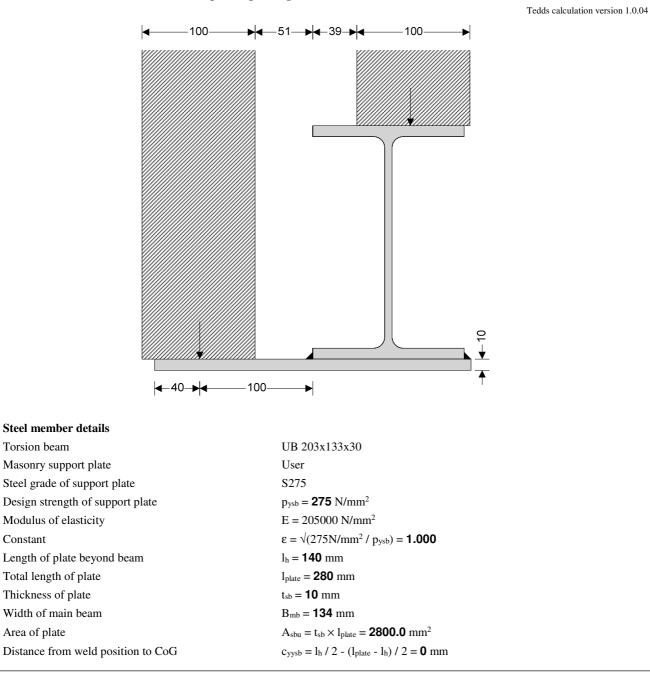
Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

STEEL BEAM 'SB-2'

Loading

Dead load:

Reaction from SB-1: $g_1 = 7.40 \text{ kN} / 1.80 \text{ m} = 4.11 \text{ kN/m}$


Imposed load:

Reaction from SB-1: q1

 $q_1 = 3.20 \text{ kN} / 1.80 \text{ m} = 1.78 \text{ kN/m}$

STEEL MASONRY SUPPORT

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Supported materials detail	
Density of masonry on main beam	$\rho_{m,mb}$ = 18.0 kN/m ³
Width of masonry on main beam	b _{mmb} = 100 mm
Height of masonry on main beam	h _{mmb} = 900 mm
Eccentricity of main beam material	e _{mb} = 39 mm
Add dead force main beam (not from masonry)	$P_{Gaddmb} = 4.1$
	kN/m
Add live force main beam (not from masonry)	$P_{Qaddmb} = 1.8 \text{ kN/m}$
Density of masonry on support beam	$\rho_{m,sb} =$ 18.0 kN/m ³
Width of masonry on support beam	b _{msb} = 100 mm
Height of masonry on support beam	h _{msb} = 900 mm
Add dead force support beam (not from masonry)	$P_{Gaddsb} = 0.0 \text{ kN/m}$
Add live force support beam (not from masonry)	$P_{Qaddsb} = 0.0 \text{ kN/m}$
Geometry	
Cavity width	c = 90 mm
Supported width of masonry	$d_m = l_h + e_{mb} - c = 89 mm$
Biaxial stress effects in the plate (SCI-P-110)	
Maximum overall bending moment	M _x = 29.1 kNm
Dist to NA combined section (CoG torsion beam)	$y_{e,all} = (D_{mb} + t_{sb}) \times A_{sbu} / (2 \times (A_{mb} + A_{sbu})) = 46 \text{ mm}$
Second moment of area of combined section	$I_{xx,all} = (I_{xxmb} + A_{mb} \times y_{e,all}^2) + A_{sbu} \times (D_{mb} / 2 + t_{sb} / 2 - y_{e,all})^2 = 4794 \text{ cm}^4$
Elastic section modulus of combined section	$Z_{xx,all} = I_{xx,all} / (D_{mb} / 2 + t_{sb} - y_{e,all}) = 709.66 \text{ cm}^3$
Section modulus of plate	$Z_{xx,plate} = 1m \times t_{sb}^2 / (6 \times 1m) = $ 16.67 cm ³ /m
Eccentricity of support beam masonry	e ₁ = 100 mm
Force of masonry on support plate	$P_1 = (b_{msb} \times h_{msb} \times \rho_{m,sb} + P_{Gaddsb}) \times \gamma_{fG} + P_{Qaddsb} \times \gamma_{fQ} = \textbf{2.3 kN/m}$
Bending at heel	$M_{x,plate} = P_1 \times e_1 = 0.2 \text{ kNm/m}$
Moment capacity of plate	$M_c = 1.2 \times Z_{x,plate} \times p_{ysb} = $ 5.5 kNm/m
	PASS - Design strength exceeds stress at heel
Longitudinal stress due to overall bending	$\sigma_1 = M_x / Z_{xx,all} = 41.1 \text{ N/mm}^2$
Constant relating to Von Mises curve	$c_{\rm fp} = (4 \times p_{\rm ysb}^2 - 3 \times \sigma_1^2)^{0.5} = $ 545.4 N/mm ²
Transverse bending stress ratio limit	$\alpha_{ts} = (c_{fp}^2 - \sigma_1^2) / (2 \times c_{fp} \times p_{ysb}) = 0.986$
Transverse bending stress ratio	$\alpha_{\rm ls} = M_{\rm x, plate} / M_{\rm c} = 0.041$
	PASS - Transverse bending stress ratio less than allowable limit
Deflection at toe	
Unfactored force on support angle	$P_{1SLS} = b_{msb} \times h_{msb} \times \rho_{m,sb} + P_{Gaddsb} + P_{Qaddsb} = 1.6 \text{ kN/m}$
Distance from weld to load position	$a_{\rm m} = e_1 = 100 \text{ mm}$

Distance from weld to load position Length of load resultant to edge of plate Dist from weld to load position as ratio of length Effective second moment of inertia Deflection at toe Deflection limit
$$\begin{split} P_{1SLS} &= b_{msb} \times h_{msb} \times \rho_{m,sb} + P_{Gaddsb} + P_{Qaddsb} = \textbf{1.6 kN/m} \\ a_m &= e_1 = \textbf{100 mm} \\ b_m &= l_h - e_1 = \textbf{40 mm} \\ a_l &= a_m / (a_m + b_m) = \textbf{0.714} \\ I_{eff_def} &= t_{sb}^3 / 12 = \textbf{83333 mm}^4 / m \\ \delta &= (a_l^2 \times (3 - a_l) / 6) \times (P_{1SLS} \times (a_m + b_m)^3) / (E_{S5950} \times I_{eff_def}) = \textbf{0.05 mm} \\ \delta_{lim} &= \textbf{1.99 mm} \end{split}$$

PASS - Deflection is within specified criteria

Weld details - assume a full length weld and that the plate acts as a propped cantilever with the prop at the weld position and the fixed end at the centre of the torsion beam Leg length of weld $s_{weld} = 6 \text{ mm}$

Throat size of weld $a_{weld} = 1/\sqrt{2} \times s_{weld} = 4.2 \text{ mm}$ Shear force at weld position $R_A = P_1 \times maX((1 + (3 \times e_1) / (2 \times B_{mb} / 2)), 1.4) = 7.3 \text{ kN/m}$

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Maximum possible force in plate	$R_p = (l_h + B_{mb}) \times t_{sb} \times p_{ysb} = 753.2 \text{ kN}$
Longitudinal shear between beam and plate	$R_1 = 2 \times R_p / L = 367.4 \text{ kN/m}$
Horizontal shear between beam and plate	$R_h = P_1 \times e_1 / (s_{weld} / 2 + t_{sb} / 2) = 28.4 \text{ kN/m}$
Resultant weld force	$R_{weld} = (R_A^2 + R_l^2 + R_h^2)^{0.5} = 0.369 \text{ kN/mm}$
Strength of weld (Table 37)	p _{weld} = 220.0 N/mm ²
Capacity of full length weld	$p_{c,weld} = a_{weld} \times p_{weld} = 0.933 \text{ kN/mm}$
	PASS - Capacity of weld exceeds resultant force on weld
Torsional loading ULS	
Loading of support beam masonry	$w_{1ULS} = (h_{msb} \times b_{msb} \times \rho_{m,sb} + P_{Gaddsb}) \times \gamma_{fG} + P_{Qaddsb} \times \gamma_{fQ} = \textbf{2.27} \text{ kN/m}$
Loading of main beam masonry	$\mathrm{w_{2ULS}} = (h_{mmb} \times b_{mmb} \times \rho_{m,mb} + P_{Gaddmb}) \times \gamma_{fG} + P_{Qaddmb} \times \gamma_{fQ} = \textbf{10.87} \ kN/m$
Self weight of support beam	$w_{3ULS} = A_{sbu} \times \rho_{sb} \times \gamma_{fG} = 0.31 \text{ kN/m}$
Torsional loading SLS	
Loading of support beam masonry	$w_{1SLS} = h_{msb} \times b_{msb} \times \rho_{m,sb} + P_{Gaddsb} + P_{Qaddsb} = \textbf{1.62} \text{ kN/m}$
Loading of main beam masonry	$w_{2SLS} = h_{mmb} \times b_{mmb} \times \rho_{m,mb} + P_{Gaddmb} + P_{Qaddmb} = \textbf{7.51} \text{ kN/m}$
Self weight of support beam	$w_{3SLS} = A_{sbu} \times \rho_{sb} = \textbf{0.22} \text{ kN/m}$
Eccentricities	
Distance to shear centre of main beam	$e_{0mb} = 0 mm$
Eccentricity of support beam masonry	$e_{1mb} = (B_{mb} + b_{msb}) / 2 + c - e_{mb} = 168 \text{ mm}$
Eccentricity of main beam masonry	$e_{2mb} = (B_{mb} - b_{mmb}) / 2 - e_{mb} = -22 \text{ mm}$
Eccentricity of support beam	$e_{3mb} = B_{mb} / 2 + c_{yysb} = 67 \text{ mm}$
Torsional effects	
Applied torque (ULS)	$T_{qULS} = abs(w_{1ULS} \times e_{1mb} + w_{2ULS} \times e_{2mb} + w_{3ULS} \times e_{3mb}) = \textbf{0.16} \text{ kNm/m}$
Total torque (ULS)	$T_q = T_{qULS} \times L = 0.66 \text{ kNm}$
Applied torque (SLS)	$T_{qSLS} = abs(w_{1SLS} \times e_{1mb} + w_{2SLS} \times e_{2mb} + w_{3SLS} \times e_{3mb}) = \textbf{0.12} \text{ kNm/m}$
Total torque (SLS)	$T_{qu} = T_{qSLS} \times L = 0.50 \text{ kNm}$
STEEL BEAM TORSION DESIGN	
In accordance with BS5950-1:2000 incorporation	ng Corrigendum No.1
-	Tedds calculation version 2.0.02
Section details	
Section type	UB 203x133x30

Section typeUB 203x133x30Steel gradeS275Design stength $p_{yw} = p_y = 275 \text{ N/mm}^2$ Constant $\varepsilon = \sqrt{(275 \text{ N/mm}^2 / p_y)} = 1.000$ Geometry - Beam unrestrained against lateral-torsional bucklingbetween supports.Effective spanL = 4100 mmLength of segment for LT buckling $L_{LT} = 4100 \text{ mm}$ Compression flanges laterally unrestrainedDevice the back buckling to		
Design stength $p_{yw} = p_y = 275 \text{ N/mm}^2$ Constant $\varepsilon = \sqrt{(275 \text{ N/mm}^2 / p_y)} = 1.000$ Geometry - Beam unrestrained against lateral-torsional bucklingbetween supports.Effective spanL = 4100 mmLength of segment for LT buckling $L_{LT} = 4100 \text{ mm}$ Compression flanges laterally unrestrained $U_{LT} = 4100 \text{ mm}$		
Constant $\epsilon = \sqrt{(275 \text{ N/mm}^2 / p_y)} = 1.000$ Geometry - Beam unrestrained against lateral-torsional buckling between supports.Effective spanL = 4100 mmLength of segment for LT buckling Compression flanges laterally unrestrainedL_LT = 4100 mm		
Geometry - Beam unrestrained against lateral-torsional buckling between supports. Effective span L = 4100 mm Length of segment for LT buckling LLT = 4100 mm Compression flanges laterally unrestrained		
between supports. Effective span L = 4100 mm Length of segment for LT buckling L _{LT} = 4100 mm Compression flanges laterally unrestrained		
Effective spanL = 4100 mmLength of segment for LT bucklingLLT = 4100 mmCompression flanges laterally unrestrained		
Length of segment for LT buckling $L_{LT} = 4100 \text{ mm}$ Compression flanges laterally unrestrained		
Compression flanges laterally unrestrained		
Partial torsional restraint against rotation about longitudinal axis provided by connection of bottom flange to supports		
Effective length for LT buckling $L_{E_{LT}} = L_{LT} \times 1.0 + 2 \times D = 4514 \text{ mm}$		
Loading - Torsional loading comprises only full-length uniformly		
distributed load(s)		
Internal forces & moments on member under factored loading for uls		
design		
Applied shear force $F_{vy} = 28.4 \text{ kN}$		

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Maximum bending moment	$M_{LT} = M_x = 29.14 \text{ kNm}$
Applied torque	T _q = 0.66 kNm
Minor axis bending moment	$M_y = 0 \text{ kNm}$
Compression force	$F_c = 0 \text{ kN}$
Equivalent uniform moment factors	
EUM factor (Cl. 4.3.6.6 and T18)	$m_{LT} = 1.000$
Torsional deflection parameters	
Beam is torsion fixed and warping free at each end. (a	as defined in SCI-P-057 section 2.1.6) - Appendix B case 4
Dist along the beam for first derivative of twist	$z_1 = 0 \text{ mm}$
Dist along the beam for second derivative of twist	z ₂ = L / 2 = 2050 mm
First derivative of angle of twist	$\phi'_1 = T_q / (G \times J) \times a / L \times [L^2 / (2 \times a) \times (1 / L - 2 \times z_1 / L^2) + \sinh(z_1 / a) - C_1 + \cosh(z_1 / a) - C_2 + \cosh(z_1 / a) - C_2 + C_2 +$
	$tanh(L / (2 \times a)) \times cosh(z_1 / a)] \times 1 rads = 2.21 \times 10^{-2} rads/m$
Third derivative of angle of twist	$\phi'''_1 = T_q / (G \times J \times a^2) \times a/L \times [\sinh(z_1 / a) - \tanh(L / (2 \times a)) \times \cosh(z_1 / a)]$
	$\times 1 \text{ rads} = -1.99 \times 10^{-2} \text{ rads/m}^3$
Angle of twist	$\phi_2 = T_q \times a / (G \times J) \times a / L \times [L^2 / (2 \times a^2) \times (z_2 / L - z_2^2 / L^2) + \cosh(z_2 / a)$
	$- \tanh(L / (2 \times a)) \times \sinh(z_2 / a) - 1] \times 1 \text{ rads} = 0.028 \text{ rads}$
Second derivative of angle of twist	$\phi''_2 = T_q / (G \times J \times a) \times a / L \times [\cosh(z_2 / a) - \tanh(L / (2 \times a)) \times \sinh(z_2 / a) - \tanh(z_2 / a) - \tanh$
	$1] \times 1 \text{ rads} = -1.52 \times 10^{-2} \text{ rads/m}^2$
Design parameters	
Total angle of twist	$\phi = abs(\phi_2) = 0.028$ rads
First derivative of ϕ	$\phi' = abs(\phi_1) = 2.21 \times 10^{-2} \text{ rads/m}$
·	$\phi = abs(\phi'_1) = 2.21\times10^{-1} \text{ rads/m}^2$ $\phi'' = abs(\phi''_2) = 1.52\times10^{-2} \text{ rads/m}^2$
Second derivative of ϕ	$\phi = abs(\phi_2) = 1.32 \times 10^{-1} \text{ rads/m}^3$ $\phi''' = abs(\phi''_1) = 1.99 \times 10^{-2} \text{ rads/m}^3$
Third derivative of ϕ	$\phi = abs(\phi_1) = 1.99 \times 10^{-1} rads/m^2$
Section classification	
	b / T = 7.0
	d / t = 26.9
	$r_{1s} = \min(1.0, \max(-1.0, F_c / (d \times t \times p_{yw}))) = 0.000$
	$r_{2s} = F_c / (A_g \times p_{yw}) = 0.000$
Shear capacity (parallel to y-axis)	Section classification is plastic
Design shear force	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$
Design shear force	Section classification is plastic $F_{vy} = \mathbf{28.4 \ kN}$ $P_{vy} = 0.6 \times \ p_y \times \ A_{vy} = \mathbf{218.4 \ kN}$
Design shear force	Section classification is plastic $F_{vy} = \mathbf{28.4 \ kN}$ $P_{vy} = 0.6 \times \ p_y \times \ A_{vy} = \mathbf{218.4 \ kN}$
Design shear force Design shear resistance (Cl. 4.2.3)	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$ $P_{vy} = 0.6 \times p_y \times A_{vy} = 218.4 \text{ kN}$ Pass - Shear
Design shear force Design shear resistance (Cl. 4.2.3) Moment capacity (x-axis)	Section classification is plastic $F_{vy} = \mathbf{28.4 \ kN}$ $P_{vy} = 0.6 \times \ p_y \times \ A_{vy} = \mathbf{218.4 \ kN}$
Design shear force Design shear resistance (Cl. 4.2.3) Moment capacity (x-axis) Design bending moment	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$ $P_{vy} = 0.6 \times p_y \times A_{vy} = 218.4 \text{ kN}$ Pass - Shear
Design shear force Design shear resistance (Cl. 4.2.3) Moment capacity (x-axis) Design bending moment Moment capacity	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$ $P_{vy} = 0.6 \times p_y \times A_{vy} = 218.4 \text{ kN}$ $M_x = 29.1 \text{ kNm}$
Design shear force Design shear resistance (Cl. 4.2.3) Moment capacity (x-axis) Design bending moment Moment capacity	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$ $P_{vy} = 0.6 \times p_y \times A_{vy} = 218.4 \text{ kN}$ $M_x = 29.1 \text{ kNm}$ $M_{cxu} = p_y \times S_x = 86.5 \text{ kNm}$ $M_{cx} = \min(p_y \times S_x, 1.2 \times p_y \times Z_x) = 86.5 \text{ kNm}$
Design shear force Design shear resistance (Cl. 4.2.3) Moment capacity (x-axis) Design bending moment Moment capacity Moment capacity low shear (Cl. 4.2.5.1)	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$ $P_{vy} = 0.6 \times p_y \times A_{vy} = 218.4 \text{ kN}$ $M_x = 29.1 \text{ kNm}$ $M_{cxu} = p_y \times S_x = 86.5 \text{ kNm}$ $M_{cx} = \min(p_y \times S_x, 1.2 \times p_y \times Z_x) = 86.5 \text{ kNm}$
Design shear force Design shear resistance (Cl. 4.2.3) Moment capacity (x-axis) Design bending moment Moment capacity Moment capacity low shear (Cl. 4.2.5.1) Lateral torsional buckling	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$ $P_{vy} = 0.6 \times p_y \times A_{vy} = 218.4 \text{ kN}$ $M_x = 29.1 \text{ kNm}$ $M_{cxu} = p_y \times S_x = 86.5 \text{ kNm}$ $M_{cx} = \min(p_y \times S_x, 1.2 \times p_y \times Z_x) = 86.5 \text{ kNm}$
Design shear force Design shear resistance (Cl. 4.2.3) Moment capacity (x-axis) Design bending moment Moment capacity Moment capacity low shear (Cl. 4.2.5.1) Lateral torsional buckling Effective length for lateral torsional buckling	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$ $P_{vy} = 0.6 \times p_y \times A_{vy} = 218.4 \text{ kN}$ $M_x = 29.1 \text{ kNm}$ $M_{cxu} = p_y \times S_x = 86.5 \text{ kNm}$ $M_{cx} = \min(p_y \times S_x, 1.2 \times p_y \times Z_x) = 86.5 \text{ kNm}$ Pass - Moment capacity exceeds design bending moment
Design shear force Design shear resistance (Cl. 4.2.3) Moment capacity (x-axis) Design bending moment Moment capacity Moment capacity low shear (Cl. 4.2.5.1) Lateral torsional buckling Effective length for lateral torsional buckling Slenderness ratio	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$ $P_{vy} = 0.6 \times p_y \times A_{vy} = 218.4 \text{ kN}$ $M_x = 29.1 \text{ kNm}$ $M_{cxu} = p_y \times S_x = 86.5 \text{ kNm}$ $M_{cx} = \min(p_y \times S_x, 1.2 \times p_y \times Z_x) = 86.5 \text{ kNm}$ $Pass - Moment capacity exceeds design bending moment L_{E_{LT}} = 4514 \text{ mm}$
Design shear force Design shear resistance (Cl. 4.2.3) Moment capacity (x-axis) Design bending moment Moment capacity Moment capacity low shear (Cl. 4.2.5.1) Lateral torsional buckling Effective length for lateral torsional buckling Slenderness ratio Buckling parameter	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$ $P_{vy} = 0.6 \times p_y \times A_{vy} = 218.4 \text{ kN}$ $M_x = 29.1 \text{ kNm}$ $M_{cxu} = p_y \times S_x = 86.5 \text{ kNm}$ $M_{cx} = \min(p_y \times S_x, 1.2 \times p_y \times Z_x) = 86.5 \text{ kNm}$ $Pass - Moment capacity exceeds design bending moment L_{E_{LT}} = 4514 \text{ mm}\lambda = L_{E_{LT}} / r_y = 142$
 Shear capacity (parallel to y-axis) Design shear force Design shear resistance (Cl. 4.2.3) Moment capacity (x-axis) Design bending moment Moment capacity Moment capacity low shear (Cl. 4.2.5.1) Lateral torsional buckling Effective length for lateral torsional buckling Slenderness ratio Buckling parameter Flange ratio Torsional index 	Section classification is plastic $F_{vy} = 28.4 \text{ kN}$ $P_{vy} = 0.6 \times p_y \times A_{vy} = 218.4 \text{ kN}$ $M_x = 29.1 \text{ kNm}$ $M_{cxu} = p_y \times S_x = 86.5 \text{ kNm}$ $M_{cx} = \min(p_y \times S_x, 1.2 \times p_y \times Z_x) = 86.5 \text{ kNm}$ Pass - Moment capacity exceeds design bending moment $L_{E_LT} = 4514 \text{ mm}$ $\lambda = L_{E_LT} / r_y = 142$ u = 0.881

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Ratio - cl 4.3.6.9	$\beta_{\rm w} = 1.0 = 1.000$
Equvalent slenderness - cl 4.3.6.7	$\lambda_{LT} = u \times v \times \lambda \times \sqrt{(\beta_w)} = \textbf{94}$
Limiting slendernes – Annex B2.2	$\lambda_{L0} = 0.4 \times \sqrt{(\pi^2 \times E_{S5950} / p_y)} = 34$
Euler stress	$p_{\rm E} = \pi^2 \times E_{\rm S5950} / \lambda_{\rm LT}^2 = 230 \text{ N/mm}^2$
Perry factor	$\eta_{LT} = max(7.0 \times (\lambda_{LT} - \lambda_{L0}) / 1000, 0) = 0.42$
	$\phi_{LT} = (p_y + (\eta_{LT} + 1) \times p_E) / 2 =$ 300287454.68
Bending strength	$p_b = p_E \times p_y / (\phi_{LT} + \sqrt{(\phi_{LT}^2 - p_E \times p_y)}) = 136 \text{ N/mm}^2$
Buckling resistance moment	$M_b = p_b \times S_x = 42.8 \text{ kNm}$
Max moment governing buckling resistance	M _{LT} = 29.1 kNm
Equiv uniform moment factor for LTB	m _{LT} = 1.00
	$M_b / m_{LT} = 42.8 \text{ kNm}$

Pass - lat. tors. buckling

Buckling under combined bending & torsion -SCI-P-057 section 2.3

For simplicity, a conservative check is applied using the maximum stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member.

Span factor	L / a = 4.22
Angle of twist	$\phi = 0.028$ rads
Second derivative of ϕ	φ" = 15.2×10⁻³ rads/m ²
Induced minor axis moment	$M_{yt} = M_x \times \phi / 1 \text{ rad} = 0.80 \text{ kNm}$
Normal stress at flange tip due to Myt	$\sigma_{byt} = M_{yt} / Z_y = 14 \text{ N/mm}^2$
Normal stress at flange tip due to warping	$\sigma_{w} = E_{S5950} \times W_{n0} \times \phi'' / 1 \text{ rad} = 21 \text{ N/mm}^{2}$
Interaction index	$i_b = M_x \times m_{LT} / M_b + (\sigma_{byt} + \sigma_w) / p_y \times (1 + 0.5 \times M_x \times m_{LT} / M_b) = \textbf{0.85}$
	Pass - Combined bending and torsion check satisfied

Local capacity under combined bending & torsion

For simplicity, a conservative check is applied using the maximum stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member.

Max. direct stress due to M _x	$\sigma_{bx} = M_x / Z_x = 104 \text{ N/mm}^2$
Combined stress - eqn 2.22	$\sigma_{bx} + \sigma_{byt} + \sigma_w = \textbf{139} \text{ N/mm}^2$
Design strength	p _y = 275 N/mm ²

Pass - Local capacity

Combined shear stresses - SCI-P-057 section 2.3

For simplicity, a conservative check is applied using the maximum shear stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member.

Max shear stresses due to bending in web	$\tau_{bw} = F_{vy} \times Q_w / (I_x \times t) = 24 \text{ N/mm}^2$
Max shear stresses due to bending in flange	$\tau_{bf} = F_{vy} \times Q_f / (I_x \times T) = \textbf{6} \ N/mm^2$
Max shear stresses due to torsion in web	$\tau_{tw} = abs(G \times t \times \phi' / 1rad) = 11 \text{ N/mm}^2$
Max shear stresses due to torsion in flange	$\tau_{tf} = abs(G \times T \times \phi' \ / \ 1 \ rad) = \textbf{17} \ N/mm^2$
Max shear stresses due to warping in flange	$\tau_{wf} = abs(-E_{S5950} \times S_{w1} \times \phi^{\prime\prime\prime} / 1 \text{ rad } / T) = 1 \text{ N/mm}^2$
Amp shear stress torsion & warping in web	$\tau_{vtw} = \tau_{tw} \times (1 + 0.5 \times M_x \times m_{LT} \ / \ M_b) = \textbf{15} \ N/mm^2$
Amp shear stress torsion & warping in flange	$\tau_{vtf} = (\tau_{tf} + \tau_{wf}) \times (1 + 0.5 \times M_x \times m_{LT} \ \text{/} \ M_b) = \textbf{24} \ N/mm^2$

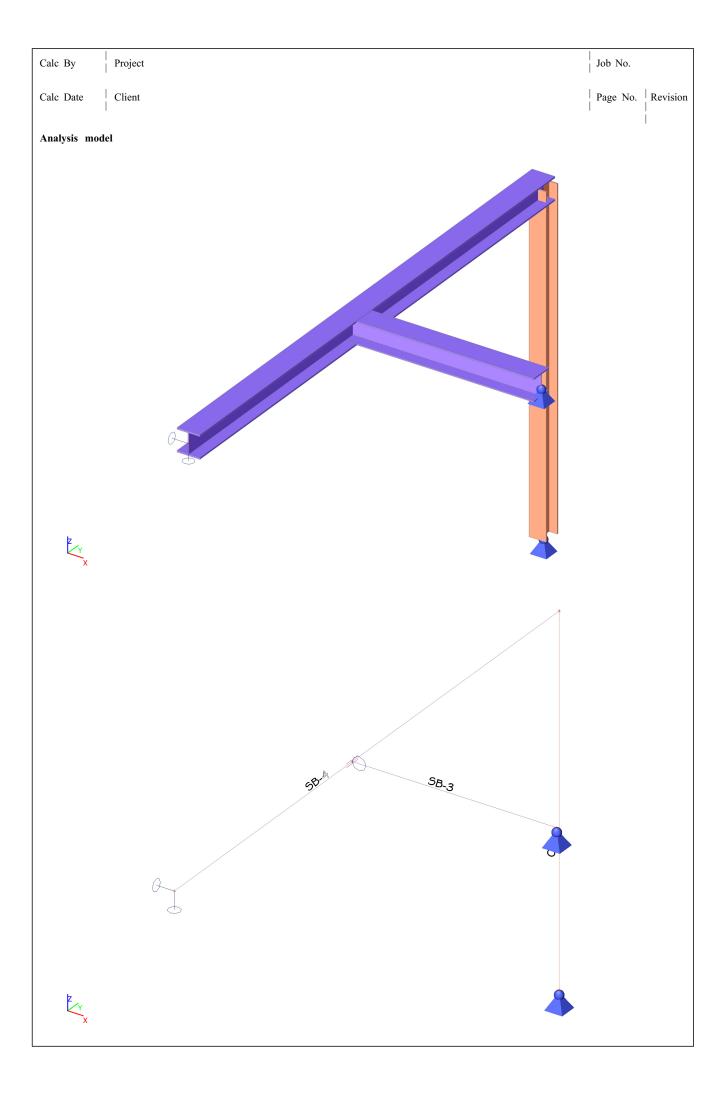
Combined shear stresses due to bending, torsion & warping:

Combined shear stresses in web	$\tau_{\rm w} = \tau_{\rm bw} + \tau_{\rm vtw} = 39 \text{ N/mm}^2$
Combined shear stresses in flange	$\tau_{\rm f} = \tau_{\rm bf} + \tau_{\rm vtf} = \textbf{30} \ \rm N/mm^2$
Shear strength	$p_v = 0.6 \times p_y = $ 165 N/mm ²

Pass - Combined shear stresses

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Deflection


Maximum y-axis deflection Deflection limit - cl. 2.5.2 $\delta_{y_{max}} = 6.0 \text{ mm}$

 $\delta_{lim} = \min(L/k_{\delta}, \delta_{lim_abs}) = 10.0 \text{ mm}$

Pass - Deflection within specified limit

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

GROUND FLOOR STEEL	FRAME
Loading	
• SB-3	
Dead load:	
Pitched roof:	$g_1 = 1.28 \text{ kN/m}^2 \times 2.60 \text{ m} = 3.33 \text{ kN/m}$
Timber floor:	$g_2 = 0.50 \text{ kN/m}^2 \times 1.40 \text{ m} \times 2 = 1.40 \text{ kN/m}$
Solid masonry wall:	$g_3 = 18 \text{ kN/m}^3 \times 0.25 \text{ m} \times 2.90 \text{ m} = 13.05 \text{ kN/m}$
Tiled stud wall (possible loft):	$g_4 = 1.00 \text{ kN/m}^2 \times 2.60 \text{ m} = 2.60 \text{ kN/m}$
	Total_Dead = $g_1 + g_2 + g_3 + g_4 = 20.38$ kN/m
Imposed load:	
Pitched roof:	$q_1 = 0.60 \text{ kN/m}^2 \times 2.60 \text{ m} = 1.56 \text{ kN/m}$
Timber floor:	$q_2 = 1.50 \text{ kN/m}^2 \times 1.40 \text{ m} \times 2 = 4.20 \text{ kN/m}$
	$Total_Imposed = q_1 + q_2 = 5.76 \text{ kN/m}$
• SB-4	
Dead load:	
Solid masonry wall:	$g_1 = 18 \text{ kN/m}^3 \times 0.25 \text{ m} \times 2.90 \text{ m} = 13.05 \text{ kN/m}$
Tiled stud wall (possible loft):	$g_2 = 1.00 \text{ kN/m}^2 \times 2.60 \text{ m} = 2.60 \text{ kN/m}$
Reaction from SB-1:	g ₃ = 7.40 kN / 1.80 m = 4.11 kN/m
	Total_Dead = $g_1 + g_2 + g_3 = 19.76$ kN/m
Imposed load:	
Reaction from SB-1:	$q_1 = 3.20 \text{ kN} / 1.80 \text{ m} = 1.78 \text{ kN/m}$
Wind load:	
Wind:	$w_1 = 0.70 \text{ kN/m}^2 \times 9.80 \text{ m}^2 = 6.86 \text{ kN}$

Calc Date Client

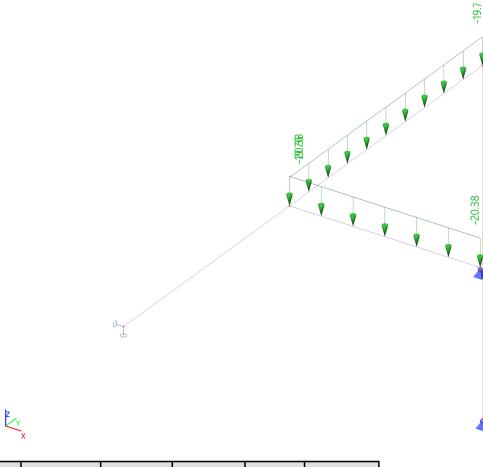
Job No.

Page No. Revision

Members 1D

Name	Cross-section	Material	Length [m]	Beg. node	End node
SB-4	SB-4 - UC203/203/60	S 275	4.80	N1	N2
SB-3	SB-3 - UC203/203/46	S 275	1.70	N3	N4
C-1	C-1 - UC152/152/37	S 275	3.00	N5	N2

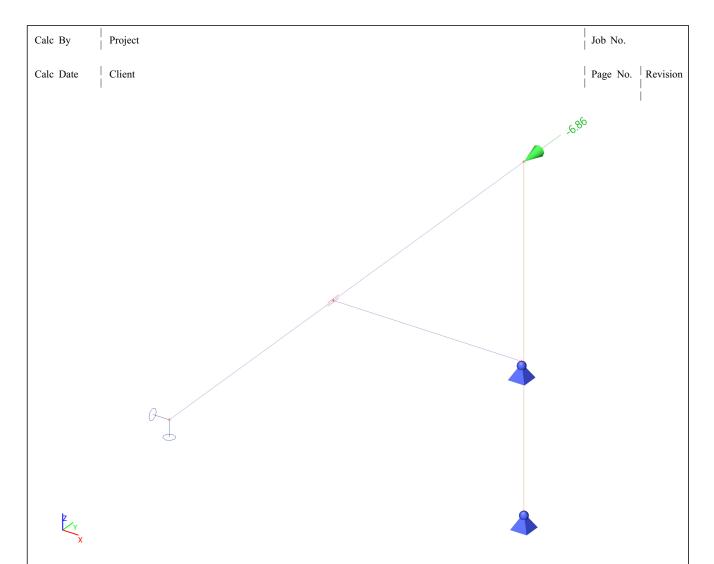
<u>Note:</u> All lengths of steel members are for analysis purposes only, accurate lengths are to be measured on site prior to ordering steel members.


Nodal supports

Name	Node	System	Туре	Х	Y	Z	Rx	Ry	Rz
Sn1	N4	GCS	Standard	Rigid	Rigid	Rigid	Free	Free	Free
Sn2	N1	GCS	Standard	Rigid	Free	Rigid	Free	Free	Free
Sn3	N5	GCS	Standard	Rigid	Rigid	Rigid	Free	Free	Free

Load cases

Name	Description Spec	Action type Load type	Load group	Direction
LC1	Self Weight	Permanent Self weight	LG1	-Z


Description Spec	Action type Load type	Load group
Dead Load	Permanent Standard	LG1
I	Spec	Spec Load type

Name	Description	Action type	Load group	Duration	Master load case
	Spec	Load type			
LC3	Imposed Load	Variable	LG2	Medium	None

Calc By	Project							Job No.	
Calc Date	Client							Page No.	Revision
Name	Description	Action type	Load group	Duration	Master load case]			
	Spec	Load type							
	Standard	Static							
				-5.76		-1.78			
			-1.78	3			-5.76		
	6		8/1-				-5.76		

Name	Description Spec	Action type Load type	Load group	Duration	Master load case
LC4	Wind	Variable	LG3	Medium	None
	Standard	Static			

Member loads

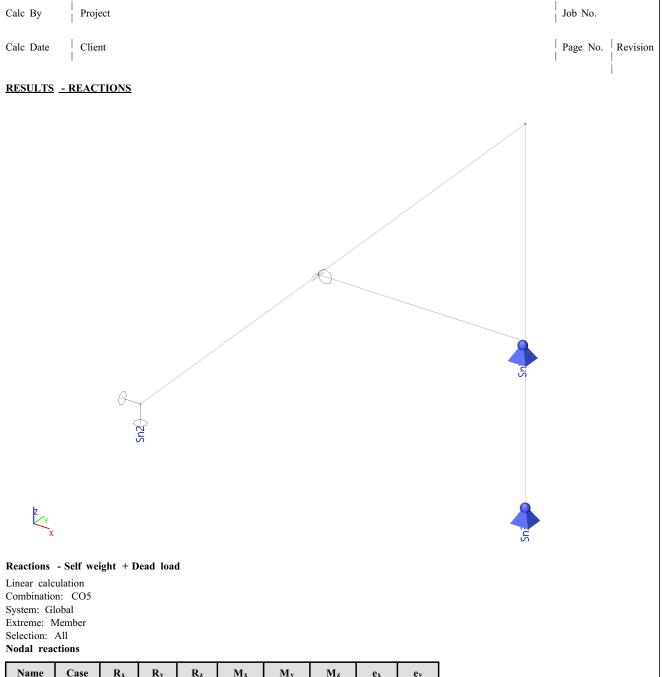
Line force

Name	Member Load case	Type System	Dir Distribution	Value - P ₁ [kN/m] Value - P ₂ [kN/m]	Pos x ₁ Pos x ₂	Coor Loc	Orig	Ecc ey [m] Ecc ez [m]
LF1	SB-3	Force	Ζ	-20.38	0.000	Rela	From start	0.00
	LC2 - Dead Load	GCS	Uniform		1.000	Length		0.00
LF2	SB-4	Force	Ζ	-19.76	0.000	Abso	From end	0.00
	LC2 - Dead Load	GCS	Uniform		2.580	Length		0.00
LF3	SB-3	Force	Ζ	-5.76	0.000	Rela	From start	0.00
	LC3 - Imposed Load	GCS	Uniform		1.000	Length		0.00
LF4	SB-4	Force	Ζ	-1.78	1.310	Abso	From end	0.00
	LC3 - Imposed Load	GCS	Uniform		3.450	Length		0.00

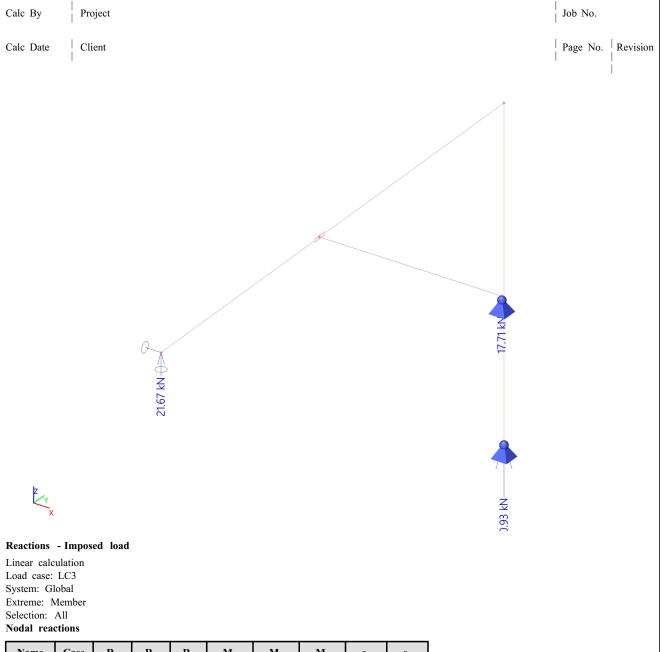
Point force in node

Name	Node	Load case	System	Dir	Туре	Value - F [kN]
F1	N2	LC4 - Wind	GCS	Y	Force	-6.86

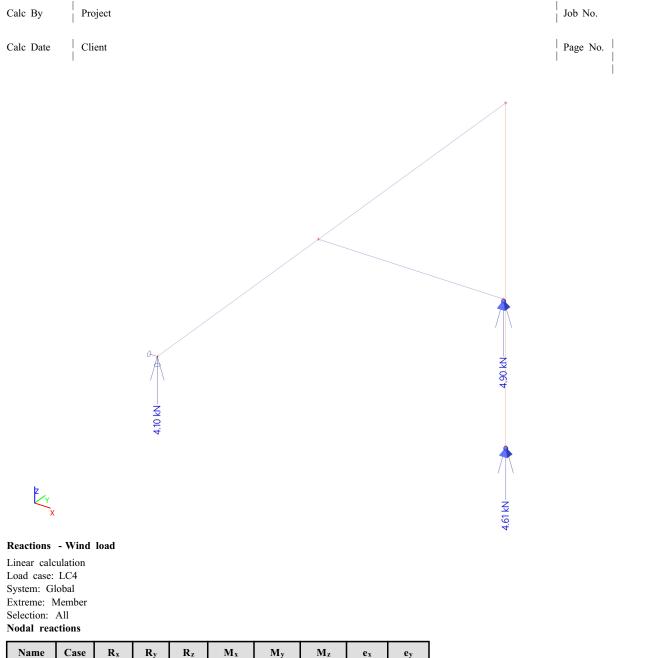
Combinations

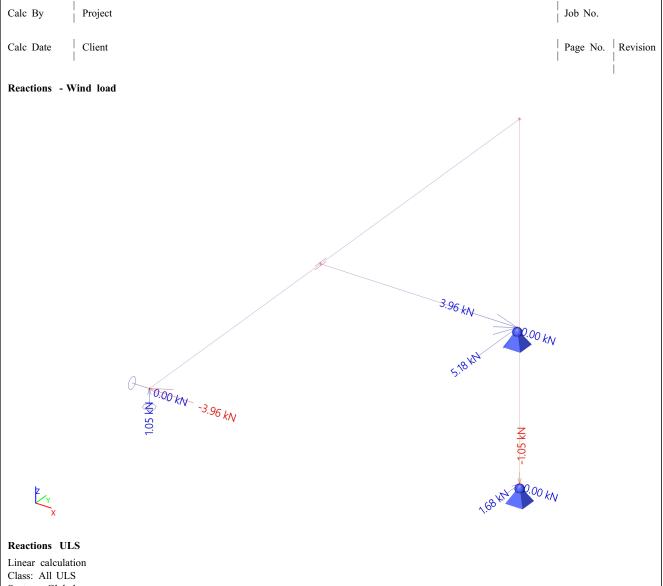

Name	Description	Туре	Load cases	Coeff. [-]
CO1	Strength	Envelope - ultimate	LC1 - Self Weight	1.40
			LC2 - Dead Load	1.40
CO2	Strength	Envelope - ultimate	LC1 - Self Weight	1.20
			LC2 - Dead Load	1.20
			LC3 - Imposed Load	1.20
			LC4 - Wind	1.20
CO3	Strength	Envelope - ultimate	LC1 - Self Weight	1.40
			LC2 - Dead Load	1.40

Calc Date | Client

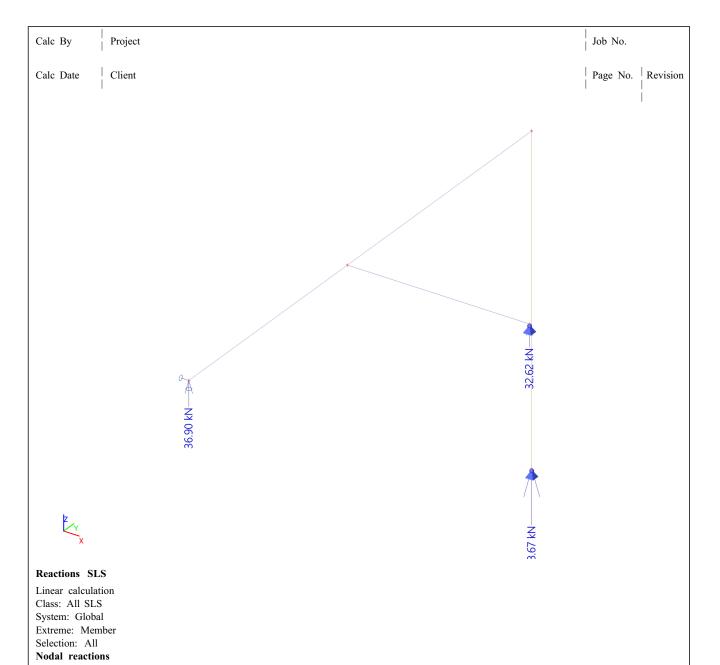

Job No.

Page No. Revision

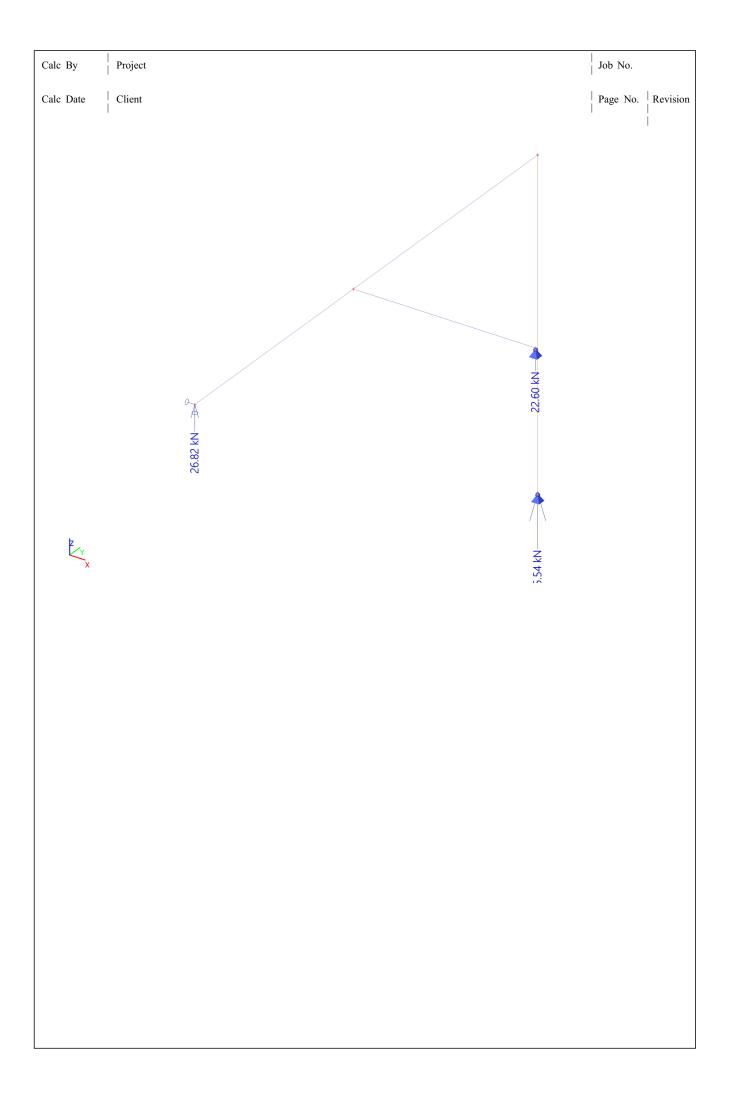

Name	Description	Туре	Load cases	Coeff. [-]
			LC3 - Imposed Load	1.60
CO4	Strength	Envelope - ultimate	LC1 - Self Weight	1.00
		_	LC2 - Dead Load	1.00
			LC4 - Wind	1.40
CO5	Service	Envelope - ultimate	LC1 - Self Weight	1.00
			LC2 - Dead Load	1.00
CO6	Service	Envelope - ultimate	LC1 - Self Weight	1.00
		_	LC2 - Dead Load	1.00
			LC3 - Imposed Load	1.00
			LC4 - Wind	1.00
CO7	Service	Envelope - ultimate	LC1 - Self Weight	1.00
			LC2 - Dead Load	1.00
			LC4 - Wind	1.00
CO8	Service	Envelope - ultimate	LC1 - Self Weight	1.00
			LC2 - Dead Load	1.00
			LC3 - Imposed Load	1.00


N	ame	Case	Rx	Ry	Rz	Mx	My	Mz	ex	ey
			[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[mm]	[mm]
Sn1	/N4	CO5/1	3.62	4.73	17.71	0.00	0.00	0.00	0.0	0.0
Sn2	/N1	CO5/1	-3.62	0.00	21.67	0.00	0.00	0.00	0.0	0.0
Sn3	/N5	CO5/1	0.00	-4.73	50.93	0.00	0.00	0.00	0.0	0.0

Name	Case	Rx	Ry	Rz	Mx	My	Mz	ex	ey
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[mm]	[mm]
Sn1/N4	LC3	0.52	0.68	4.90	0.00	0.00	0.00	0.0	0.0
Sn2/N1	LC3	-0.52	0.00	4.10	0.00	0.00	0.00	0.0	0.0
Sn3/N5	LC3	0.00	-0.68	4.61	0.00	0.00	0.00	0.0	0.0



	Name	Case	R _x [kN]	Ry [kN]	Rz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]	ex [mm]	ey [mm]
S	Sn1/N4	LC4	3.96	5.18	0.00	0.00	0.00	0.00	-	-
S	Sn2/N1	LC4	-3.96	0.00	1.05	0.00	0.00	0.00	0.0	0.0
S	Sn3/N5	LC4	0.00	1.68	-1.05	0.00	0.00	0.00	0.0	0.0

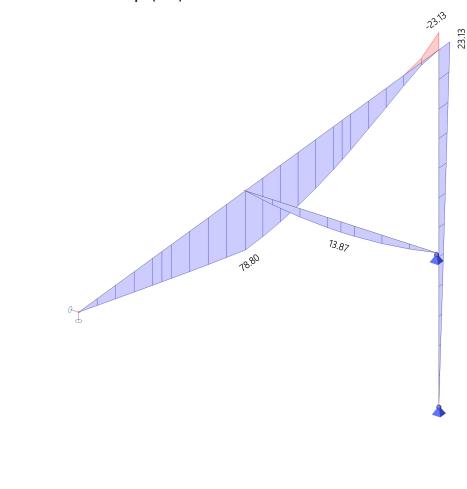


System: Global Extreme: Member Selection: All Nodal reactions

Name	Case	Rx [kN]	Ry [kN]	Rz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]	ex [mm]	ey [mm]
Sn1/N4	CO2/1	9.73	12.70	27.12	0.00	0.00	0.00	0.0	0.0
Sn1/N4	CO3/2	5.90	7.71	32.62	0.00	0.00	0.00	0.0	0.0
Sn1/N4	CO4/3	3.62	4.73	17.71	0.00	0.00	0.00	0.0	0.0
Sn2/N1	CO4/3	-3.62	0.00	21.67	0.00	0.00	0.00	0.0	0.0
Sn2/N1	CO3/2	-5.90	0.00	36.90	0.00	0.00	0.00	0.0	0.0
Sn2/N1	CO2/1	-9.73	0.00	32.19	0.00	0.00	0.00	0.0	0.0
Sn3/N5	CO3/2	0.00	-7.71	78.67	0.00	0.00	0.00	0.0	0.0
Sn3/N5	CO4/4	0.00	-2.38	49.45	0.00	0.00	0.00	0.0	0.0

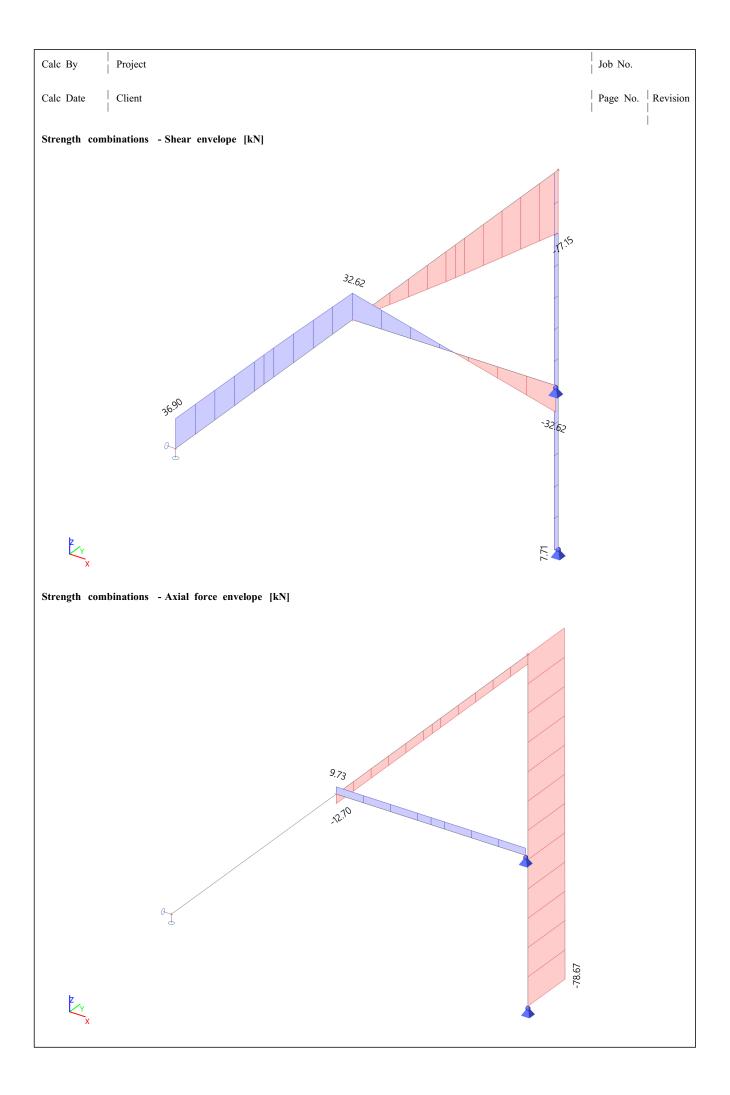
Name	Case	Rx [kN]	Ry [kN]	Rz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]	ex [mm]	ey [mm]
Sn1/N4	CO6/1	8.11	10.59	22.60	0.00	0.00	0.00	0.0	0.0
Sn1/N4	CO5/2	3.62	4.73	17.71	0.00	0.00	0.00	0.0	0.0
Sn2/N1	CO5/2	-3.62	0.00	21.67	0.00	0.00	0.00	0.0	0.0
Sn2/N1	CO6/1	-8.11	0.00	26.82	0.00	0.00	0.00	0.0	0.0
Sn3/N5	CO6/3	0.00	-5.41	55.54	0.00	0.00	0.00	0.0	0.0
Sn3/N5	CO6/4	0.00	-3.05	49.87	0.00	0.00	0.00	0.0	0.0

Calc Date | Client


₽___Y

RESULTS - 1D INTERNAL FORCES

Linear calculation Class: All ULS Coordinate system: Principal Extreme 1D: Member Selection: All


Name	dx [m]	Case	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
SB-4	2.22+	CO2/1	-12.70	0.00	1.64	0.00	68.91	0.00
SB-4	0.00	CO3/2	0.00	5.90	36.90	0.00	0.00	0.00
SB-4	4.80	CO3/2	-7.71	0.00	-77.15	0.00	-23.13	0.00
SB-4	2.22+	CO3/2	-7.71	0.00	-0.03	0.00	78.80	0.00
SB-4	2.22-	CO2/1	0.00	9.73	28.76	0.00	68.91	21.60
SB-3	0.00	CO2/1	9.73	-12.70	27.12	0.00	0.00	21.60
SB-3	1.70	CO3/2	5.90	-7.71	-32.62	0.00	0.00	0.00
SB-3	0.00	CO3/2	5.90	-7.71	32.62	0.00	0.00	13.11
SB-3	0.85+	CO3/2	5.90	-7.71	0.00	0.00	13.87	6.55
SB-3	1.70	CO4/3	3.62	-4.73	-17.71	0.00	0.00	0.00
C-1	3.00	CO4/4	-48.37	0.00	2.38	0.00	7.13	0.00
C-1	3.00	CO3/2	-77.15	0.00	7.71	0.00	23.13	0.00
C-1	0.00	CO3/2	-78.67	0.00	7.71	0.00	0.00	0.00

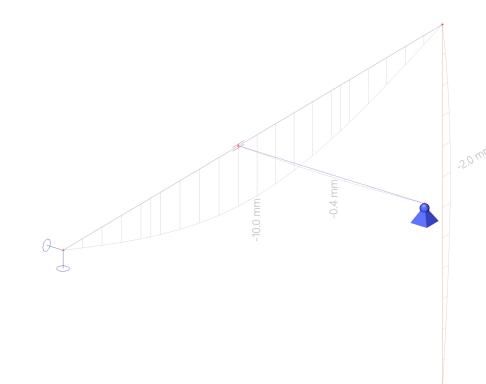
Strength combinations - Moment envelope [kNm]

Job No.

Page No. Revision

Calc Date | Client

RESULTS - DEFORMATION


Relative deformation

Linear calculation, Extreme : Member, System : Principal Selection : All Class : All SLS

Member	dx [m]	Case - combination	uy [mm]	Rel uy [1/xx]	uz [mm]	Rel uz [1/xx]
SB-4	1.23	CO6/1	-1.3	1/1695	-7.0	1/690
SB-4	4.80	CO6/1	8.0	1/323	0.0	1/10000
SB-4	0.00	CO5/2	0.0	0	0.0	0
SB-4	2.45	CO6/1	0.7	1/3554	-10.0	1/478
SB-3	0.73	CO6/1	-1.0	1/1657	-0.4	1/4584
SB-3	0.00	CO5/2	0.0	0	0.0	0
SB-3	0.85	CO6/1	-1.0	1/1700	-0.4	1/4476
C-1	0.00	CO5/2	0.0	0	0.0	0
C-1	3.00	CO6/1	8.0	1/375	0.0	0
C-1	1.75	CO6/3	2.4	1/1259	-2.0	1/1487
C-1	1.75	CO6/1	4.7	1/643	-1.4	1/2158

Relative deformation; uz

₽___Y

Job No.

Calc	Ву	Projec	ct									Job	No.
Calc	Date	Client	t									Pag	e No.
STE	EL MEN	ABER 1	DESIGN	& CHECK (BS-EN1993)								
			heck ULS		<u> </u>								
Linea Class Coor Extre	ar calcula Ar calcula Ar calcula Ar calcula Ar calcula dinate sy eme 1D: otion: All	tion S vstem: Pr Cross-se	rincipal										
	1993-1-1 onal anne		C heck sh BS-EN	NA									
Mer	nber SB	-4 2.2	220 / 4.800) m UC203	/203/60 S 2'	75 Al	I ULS	0.53 -					
Co	mbinatio	n kev											
		-	+ 1.20*LC	C2 + 1.20*LC3	3 + 1.20*LC4								
Par	rtial safe	ty faata	re		 								
		-	cross-section	ons 1.00									
			instability	1.00									
· ·			net section										
Ма	terial												
		h f	275.0	MDa									
	d strength mate stren		430.0	MPa MPa									
	rication	iigui iu	Rolled	Ivii a									
	ECTION	CHE	_										
				on 2.220 m									
			-										
	ernal for		Calculated										
N _{Ed} V _{y,E}).00).73	kN kN									
V z,E			28.76	kN									
TEd			0.00	kNm									
M _{y,I}	Ed	6	58.91	kNm									
M _{z,E}		2	21.60	kNm									
Class	sification	accordi		1993-1-1 artic	le 5.5.2 according to EN	J 1993-1	-1 Tabl	e 5.2 SI	heet 1 &	2			
Id	Туре	c [mm]	t [mm]	σ1 [kN/m ²]	σ2 [kN/m ²]	Ψ [-]	kσ [-]	α [-]	c/t [-]	Class 1 Limit [-]	Class 2 Limit [-]	Class 3 Limit [-]	Class
1	SO	88.0	14.2	-1.255e+05	-2.176e+05								
3	SO	88.0	14.2	-9.433e+04	-2.278e+03								
4	Ι	160.8	9.4	-9.045e+04	9.045e+04	-1.00		0.50	17.11	66.56	76.73	114.63	1
	0.0	100.0	1		1 C								
5 7	SO SO	88.0 88.0	14.2 14.2	1.255e+05 9.433e+04	2.176e+05 2.278e+03	0.58	0.47	1.00	6.20 6.20	8.32 8.32	9.24 9.24	13.34 24.46	1

Note: The Classification limits have been set according to Semi-Comp+.

The cross-section is classified as Class 1

Bending moment check for $M_{\rm y}$

According to EN 1993-1-1 article 6.2.5 and formula (6.12),(6.13)

W _{pl,y}	6.5608e-04	m ³
M _{pl,y,Rd}	180.42	kNm
Unity check	0.38	-

Bending moment check for \mathbf{M}_z

According to EN 1993-1-1 article 6.2.5 and formula (6.12),(6.13)

W _{pl,z}	3.0534e-04	m ³
M _{pl,z,Rd}	83.97	kNm
Unity check	0.26	-

Calc By	Project	Job No.
Calc Date	Client	Page No. Revis
Shear check	for V _v	I
Shear check According to	for V_y EN 1993-1-1 article 6.2.6 and formula (6.17)	

η	1.00	
Av	6.0290e-03	m ²
V _{pl,y,Rd}	957.23	kN
Unity check	0.01	-

Shear check for Vz

According to EN 1993-1-1 article 6.2.6 and formula (6.17)

η	1.00	
Av	2.2184e-03	m ²
V pl,z,Rd	352.22	kN
Unity check	0.08	-

Combined bending, axial force and shear force check According to EN 1993-1-1 article 6.2.9.1 and formula (6.41)

Unity check (6.41) = 0.15 + 0.26 = 0.40 -

Note: Since the shear forces are less than half the plastic shear resistances their effect on the moment resistances is neglected.

The member satisfies the section check.

...::STABILITY CHECK::...

Classification for member buckling design

Decisive position for stability classification: 2.220 m

Classification according to EN 1993-1-1 article 5.5.2

Classification of Internal and Outstand parts according to EN 1993-1-1 Table 5.2 Sheet 1 & 2

Id	Туре	c [mm]	t [mm]	σ1 [kN/m ²]	σ2 [kN/m ²]	Ψ [-]	kσ [-]	α [-]	c/t [-]	Class 1 Limit [-]	Class 2 Limit [-]	Class 3 Limit [-]	Class
1	SO	88.0	14.2	-1.255e+05	-2.176e+05								
3	SO	88.0	14.2	-9.433e+04	-2.278e+03								
4	Ι	160.8	9.4	-9.045e+04	9.045e+04	-1.00		0.50	17.11	66.56	76.73	114.63	1
5	SO	88.0	14.2	1.255e+05	2.176e+05	0.58	0.47	1.00	6.20	8.32	9.24	13.34	1
7	SO	88.0	14.2	9.433e+04	2.278e+03	0.02	1.59	1.00	6.20	8.32	9.24	24.46	1

Note: The Classification limits have been set according to Semi-Comp+. The cross-section is classified as Class 1

Lateral Torsional Buckling check

According to EN 1993-1-1 article 6.3.2.1 & 6.3.2.3 and formula (6.54)

LTB parameters										
Method for LTB curve	Alternative case									
Plastic section modulus W _{pl,y}	6.5608e-04	m ³								
Elastic critical moment Mcr	1785.11	kNm								
Relative slenderness $\lambda_{rel,LT}$	0.32									
Limit slenderness $\lambda_{rel,LT,0}$	0.40									

Note: The slenderness or bending moment is such that Lateral Torsional Buckling effects may be ignored according to EN 1993-1-1 article 6.3.2.2(4).

Mcr parameters										
LTB length L	2.220	m								
Influence of load position	no influence									
Correction factor k	1.00									
Correction factor kw	1.00									
LTB moment factor C1	1.74									
LTB moment factor C2	0.01									

Calc By	Project				
Calc Date	Client				
Mcr param	otors				
LTB moment		1.00			
Shear center		0.0	mm		
		0.0	mm		
		0.0	mm		
	1.7	0.0	mm		
		•	to ECCS 119 2006 / 0	Galea 200)2.
	axial compression EN 1993-1-1 article		ormula (6.61),(6.62)		_
Bending an	d axial compression	check par	ameters		
Interaction n			alternative method 1		4
Cross-section			7.6400e-03	m ²	4
	n modulus W _{pl,y}		6.5608e-04	m ³	-
	n modulus W _{pl,z}		3.0534e-04	m ³	4
	pression force N _{Ed}		0.00	kN 1-N	-
0	ing moment (maximu	/ //	68.91 21.60	kNm kNm	-
-	ing moment (maximus compression resista		21.60 2101.00	kNm kN	-
	moment resistance		180.42	kNm	-
	moment resistance		83.97	kNm	-
Reduction fa		IVI Z,KK	1.00	KINIII	-
Reduction fa			1.00		-
	luction factor $\chi_{LT,mod}$		1.00		
Interaction fa			1.00		
Interaction fa			0.59		
Interaction fa	•		0.58		
Interaction fa	actor k _{zz}		0.79		
viaximum mo	oment M _{y,Ed} is derived	d from bean	n SB-4 position 2.220	m.	
Maximum mo	oment M _{z,Ed} is derived	d from bean	n SB-4 position 2.220 n SB-4 position 2.220		
Maximum mo Interaction	method 1 paramete	d from bean	n SB-4 position 2.220		kN
Maximum mo Interaction Critical Euler	method 1 paramete r load N _{cr,y}	d from bean	760.91 SB-4 position 2.220		kN kN
Maximum mo Interaction Critical Euler Critical Euler	method 1 paramete r load N _{er,y} r load N _{er,z}	d from bean	760.91 12227.53		kN
Maximum mo Interaction Critical Euler Critical Euler Elastic critica	method 1 paramete r load N _{cr,y} r load N _{cr,z} al load N _{cr,T}	d from bean	760.91 SB-4 position 2.220		
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Elastic critical Fuler Plastic section	method 1 paramete r load N _{cr,y} r load N _{cr,z} al load N _{cr,T} m modulus W _{pl,y}	d from bean	SB-4 position 2.220 760.91 12227.53 11280.53 1		kN kN
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Elastic critica Euler Elastic sectio Elastic sectio Elastic sectio Elastic sectio	method 1 paramete r load N _{cr,y} r load N _{cr,z} al load N _{cr,T}	d from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04		kN kN m ³
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Plastic sectio Elastic sectio Plastic sectio Plastic sectio	method 1 paramete r load N _{cr,y} r load N _{cr,Z} al load N _{cr,T} n modulus W _{pl,y} n modulus W _{el,y}	d from bean	760.91 12227.53 11280.53 6.5608e-04 5.8400e-04		kN kN m ³ m ³
Maximum mod Interaction Critical Euler Critical Euler Euler Critical Euler Euler Elastic critical Euler Plastic sectio Elastic Plastic sectio Elastic Plastic sectio Elastic	method 1 paramete r load N _{cr,y} r load N _{cr,Z} al load N _{cr,T} m modulus W _{pl,y} m modulus W _{pl,y} m modulus W _{pl,z}	d from bean	760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04		kN kN m ³ m ³ m ³
Maximum mod Interaction Critical Euler Critical Euler Euler Critical Euler Euler Elastic critical Euler Plastic sectio Elastic Plastic sectio Elastic Elastic sectio Elastic Second mom Second	method 1 paramete r load N _{cr,y} r load N _{cr,z} al load N _{cr,T} m modulus W _{pl,y} m modulus W _{pl,z} m modulus W _{el,z} m modulus W _{el,z}	d from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 2.0646e-05		kN kN m ³ m ³ m ³ m ³
Maximum mod Interaction Critical Euler Critical Euler Euler Critical Euler Euler Clastic sectio Elastic sectio Plastic sectio Elastic sectio Plastic sectio Elastic sectio Elastic sectio Second mom Second mom Torsional cor	$\begin{array}{c c} \mbox{ment} & M_{z,Ed} \mbox{ is derived} \\ \hline \mbox{method} & 1 \mbox{ paramete} \\ \hline \mbox{method} & N_{cr,y} \\ \hline \mbox{r} \mbox{load} & N_{cr,z} \\ \hline \mbox{al load} & N_{cr,T} \\ \hline \mbox{modulus} & W_{pl,y} \\ \hline \mbox{modulus} & W_{pl,y} \\ \hline \mbox{modulus} & W_{pl,z} \\ \hline \mbox{modulus} & W_{pl,z} \\ \hline \mbox{modulus} & W_{el,z} \\ \hline \mbox{ent} \mbox{of area} & I_y \\ \hline \mbox{nent} \mbox{of area} & I_z \\ \hline \mbox{mstant} & I_t \\ \hline \end{array}$	from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07	m.	kN kN m ³ m ³ m ³ m ³ m ⁴
Maximum mod Interaction Critical Euler Critical Euler Euler Critical Euler Euler Elastic critical Euler Plastic section Plastic section Plastic section Elastic section Elastic section Second mom Torsional co Method for e	ment M _{z,Ed} is derived method 1 paramete r load N _{cr,y} r load N _{cr,z} al load N _{cr,T} m modulus W _{pl,y} m modulus W _{pl,z} m modulus W _{el,y} m modulus W _{el,z} m m m m m m m m m m m m m m m m m m m	t from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Get	m.	kN kN m³ m³ m³ m³ m4 m4
Maximum mod Interaction Critical Euler Critical Euler Euler Critical Euler Euler Elastic critical Euler Plastic section Plastic section Elastic section Elastic section Elastic section Second momm Torsional co Method for e Design benditi	ment M _{z,Ed} is derived method 1 paramete r load N _{cr,y} r load N _{cr,z} al load N _{cr,T} n modulus W _{pl,y} n modulus W _{pl,z} n modulus W _{el,y} n modulus W _{el,z} n modulus W _{el,}	t from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 1 1	m.	kN kN m ³ m ³ m ³ m ⁴ m ⁴ m ⁴ m ⁴ kNm
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Plastic section Elastic section Plastic section Elastic section Elastic section Second mom Torsional cor Method for e Design bendit Maximum re	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,z}$ al load $N_{cr,T}$ n modulus $W_{pl,y}$ n modulus $W_{pl,z}$ n modulus $W_{pl,z}$ n modulus $W_{el,z}$ n modu	t from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0	m.	kN kN m³ m³ m³ m³ m4 m4
Maximum mo Interaction Critical Euler Critical Euler Elastic critica Plastic section Elastic section Elastic section Elastic section Second morm Torsional con Method for e Design bendir Maximum re Equivalent n	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,z}$ al load $N_{cr,T}$ n modulus $W_{pl,y}$ n modulus $W_{pl,z}$ n modulus $W_{pl,z}$ n modulus $W_{el,z}$ tent of area I_y tent of area I_z mstant I_t equivalent moment fa ing moment (maximu elative deflection δ_z noment factor $C_{my,0}$	t from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0 1.00	m.	kN kN m ³ m ³ m ³ m ⁴ m ⁴ m ⁴ m ⁴ kNm
Maximum mo Interaction Critical Euler Critical Euler Elastic critica Plastic section Elastic section Elastic section Elastic section Second morm Torsional con Method for e Design bendir Maximum re Equivalent n Method for e	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,T}$ n modulus $W_{pl,y}$ n modulus $W_{el,y}$ n modulus $W_{el,y}$ n modulus $W_{el,z}$ n mo	t from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0 1.00 Table A.2 Line 1 (Line	m.	kN kN m ³ m ³ m ³ m ⁴ m ⁴ m ⁴ m ⁴ kNm
Maximum mo Interaction Critical Euler Critical Euler Elastic critica Plastic section Elastic section Elastic section Elastic section Second mom Torsional con Method for e Design bendir Maximum re Equivalent n Method for e Ratio of end	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,z}$ al load $N_{cr,T}$ n modulus $W_{pl,y}$ n modulus $W_{pl,z}$ n modulus $W_{el,y}$ n modulus $W_{el,z}$ n moment factor $C_{my,0}$ equivalent moment fa moments Ψ_z	t from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0 1.00 Table A.2 Line 1 (Line 0.00 1.00	m.	kN kN m ³ m ³ m ³ m ⁴ m ⁴ m ⁴ m ⁴ kNm
Maximum mo Interaction Critical Euler Critical Euler Elastic critica Plastic sectio Elastic sectio Elastic sectio Elastic sectio Second mom Torsional co Method for o Design bendi Maximum re Equivalent n Method for o Ratio of end Equivalent n	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,T}$ n modulus $W_{pl,y}$ n modulus $W_{el,y}$ n modulus $W_{el,y}$ n modulus $W_{el,z}$ n mo	t from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0 1.00 Table A.2 Line 1 (Line 0.00) 0.79	m.	kN kN m ³ m ³ m ³ m ⁴ m ⁴ m ⁴ m ⁴ kNm
Maximum mod Interaction Critical Euler Critical Euler Euler Critical Euler Euler Clastic critical Euler Plastic sectio Elastic sectio Plastic sectio Elastic sectio Elastic sectio Second mom Second mom Torsional cor Method for e Design bendit Maximum re Equivalent n Method for e Ratio of end Equivalent n Torsional cor	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,z}$ al load $N_{cr,T}$ n modulus $W_{pl,y}$ n modulus $W_{pl,z}$ n modulus $W_{el,y}$ n modulus $W_{el,z}$ n moment factor $C_{my,0}$ equivalent moment fa moments Ψ_z	t from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0 1.00 Table A.2 Line 1 (Lin 0.00 0.79 1.00	m.	kN kN m ³ m ³ m ³ m ⁴ m ⁴ m ⁴ m ⁴ kNm
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Elastic critical Euler Elastic sectio Plastic sectio Elastic sectio Elastic sectio Plastic sectio Elastic sectio Elastic sectio Second mom Second mom Torsional cor Method for e Equivalent n Method for e Ratio of end Equivalent n Factor µy Factor µz E	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,z}$ al load $N_{cr,T}$ n modulus $W_{pl,y}$ n modulus $W_{pl,z}$ n modulus $W_{el,y}$ n modulus $W_{el,z}$ n moment factor $C_{my,0}$ equivalent moment fa moments Ψ_z	t from bean	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0 1.00 Table A.2 Line 1 (Lin 0.00 0.79 1.00	m.	kN kN m ³ m ³ m ³ m ⁴ m ⁴ m ⁴ m ⁴ kNm
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Elastic critical Euler Elastic sectio Plastic sectio Elastic sectio Elastic sectio Plastic sectio Elastic sectio Elastic sectio Second mom Second mom Torsional cor Method for elastic sectio Equivalent n Method for elastic sectio factor µy Factor µz Factor µL Factor aLT	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,T}$ on modulus $W_{pl,y}$ on modulus $W_{el,y}$ on modulus $W_{el,z}$ on modulus $W_{el,z}$ on modulus $W_{el,z}$ nent of area I_y nent of area I_z nstant I_t equivalent moment fa ing moment (maximuz elative deflection δ_z noment factor $C_{my,0}$ equivalent moment fa moments ψ_z noment factor $C_{mz,0}$	tor Cmy,0 m) My,Ed	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0 1.00 Table 7.79 1.00 1.00 0.99	m.	kN kN m ³ m ³ m ⁴ m ⁴ m ⁴ kNm mm
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Elastic critical Euler Elastic sectio Elastic sectio Elastic sectio Elastic sectio Elastic sectio Elastic sectio Elastic sectio Second mom Mom Torsional cor Method for c Equivalent n Method for c Ratio of end Equivalent n Factor µ _y Factor µ _z Factor µ _z Factor a _{LT} Critical mom	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,T}$ on modulus $W_{pl,y}$ on modulus $W_{el,y}$ on modulus $W_{el,y}$ on modulus $W_{el,z}$ on modulus $W_{el,z}$ not fare I_y nent of area I_y nent of area I_z nstant I_t equivalent moment fa ing moment (maximuz) elative deflection δ_z noment factor $C_{my,0}$ equivalent moment fa moments ψ_z noment factor $C_{mz,0}$ ment for uniform bend	tor Cmy,0 m) My,Ed	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0 1.00 Table A.2 Line 1 (Lin 0.00 0.79 1.00	m.	kN kN m ³ m ³ m ³ m ⁴ m ⁴ m ⁴ m ⁴ kNm
Maximum mo Interaction Critical Euler Critical Euler Elastic critica Plastic section Elastic section Elastic section Elastic section Second mom Torsional con Method for of Ratio of end Equivalent n Method for of Ratio of end Equivalent n Factor µy Factor µz Factor aLT Critical mom	method 1 paramete method 1 paramete r load $N_{er,y}$ r load $N_{er,z}$ al load $N_{er,T}$ n modulus $W_{pl,y}$ n modulus $W_{el,y}$ n modulus $W_{el,z}$ n modulus $W_$	tor Cmy,0 m) My,Ed	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0 1.00 1.00 Table A.2 Line 1 (Lin 0.00 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	m.	kN kN m ³ m ³ m ⁴ m ⁴ m ⁴ kNm mm
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Elastic critical Euler Elastic critical Plastic sectio Elastic sectio Elastic sectio Elastic sectio Elastic sectio Second mom Second mom Torsional cor Method for e Design bendid Maximum ree Equivalent n Method for e Ratio of end Equivalent n Factor µ _Z Factor µ _Z Factor a _{LT} Critical mom Relative slen Limit relative	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,T}$ on modulus $W_{pl,y}$ on modulus $W_{el,y}$ on modulus $W_{el,y}$ on modulus $W_{el,z}$ on modulus $W_{el,z}$ not fare I_y nent of area I_y nent of area I_z nstant I_t equivalent moment fa ing moment (maximuz) elative deflection δ_z noment factor $C_{my,0}$ equivalent moment fa moments ψ_z noment factor $C_{mz,0}$ ment for uniform bend	tor Cmy,0 m) My,Ed	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Ge 68.91 -12.0 1.00 1.00 1.00 Table A.2 Line 1 (Lin 0.00 0.79 1.00 1.00 0.99 1024.70 0.42 0.42 10.42 10.42	m.	kN kN m ³ m ³ m ⁴ m ⁴ m ⁴ kNm mm
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Elastic critical Euler Elastic critical Plastic sectio Elastic sectio Elastic sectio Elastic sectio Elastic sectio Elastic sectio Second mom Second mom Second mom Torsional cor Method for ed Equivalent n Method for ed Ratio of end Equivalent n Factor µ_Z Factor µ_Z Factor aLT Critical mom Relative slen Limit relative slen slen	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,T}$ on modulus $W_{pl,y}$ on modulus $W_{pl,y}$ on modulus $W_{el,y}$ on modulus $W_{el,z}$ on modulus $W_{el,z}$ on modulus $W_{el,z}$ on modulus $W_{el,z}$ on modulus $W_{el,z}$ nent of area I_z nstant I_t equivalent moment fa ing moment (maximum elative deflection δ_z noment factor $C_{my,0}$ equivalent moment fa moments ψ_z noment factor $C_{mz,0}$ moment for uniform bend iderness $\lambda_{rel,0}$ e slenderness $\lambda_{rel,0,lim}$	tor Cmy,0 m) My,Ed	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Gee 68.91 -12.0 1.00 Table 1.00 0.79 1.00 0.42 0.26 0.26	m.	kN kN m ³ m ³ m ⁴ m ⁴ m ⁴ kNm mm
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Elastic critical Euler Elastic sectio Elastic sectio Elastic sectio Elastic sectio Elastic sectio Elastic sectio Second mom Second mom Torsional co Method for e Equivalent n Method for e Ratio of end Equivalent n Factor µ _Z Factor µ _Z Factor a _{LT} Critical mom Relative slen Limit relative slen Limit Equivalent n Equivalent n	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,T}$ on modulus $W_{pl,y}$ on modulus $W_{pl,y}$ on modulus $W_{el,y}$ on modulus $W_{el,z}$ on modulus $W_{el,z}$ not fare a I_z nstant I_t equivalent moment fa ing moment (maximum elative deflection δ_z noment factor $C_{my,0}$ equivalent moment fa moment factor $C_{mz,0}$ ment for uniform bend iderness $\lambda_{rel,0}$ e slenderness $\lambda_{rel,0,lim}$ noment factor C_{my}	tor Cmy,0 m) My,Ed	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Gee 68.91 -12.0 1.00 Table 7.99 1.00 1.00 0.79 1.00 0.99 1024.70 0.42 0.26 1.00	m.	kN kN m ³ m ³ m ⁴ m ⁴ m ⁴ kNm mm
Maximum mod Interaction Critical Euler Critical Euler Elastic critical Plastic section Elastic section Elastic section Plastic section Elastic section Elastic section Elastic section Second mom Second mom Torsional cor Method for er Ratio of end Equivalent n Factor µ ₂ Factor µ ₂ Factor a _{LT} Critical mom Relative slen Limit relative Equivalent n	ment $M_{z,Ed}$ is derived method 1 paramete r load $N_{cr,y}$ r load $N_{cr,z}$ al load $N_{cr,T}$ m modulus $W_{pl,y}$ m modulus $W_{pl,y}$ m modulus $W_{el,y}$ m modulus $W_{el,z}$ m moment factor $C_{my,0}$ capuivalent moment factor $C_{mz,0}$ m moment factor C_{my} moment factor C_{my} moment factor C_{my}	tor Cmy,0 m) My,Ed	SB-4 position 2.220 760.91 12227.53 11280.53 6.5608e-04 5.8400e-04 3.0534e-04 2.0100e-04 6.1258e-05 2.0646e-05 4.7200e-07 Table A.2 Line 2 (Gee 68.91 -12.0 1.00 Table 7.99 1.00 1.00 0.79 1.00 0.99 1024.70 0.42 0.26 1.00 0.79 1.00	m.	kN kN m ³ m ³ m ⁴ m ⁴ m ⁴ kNm mm

Calc By Pro	oject							Job No.	
Calc Date Cli	ient							Page No.	Revisio
Interaction meth	10d 1 parame	eters							I
Factor d _{LT}	ł		0.80						
			2.09						
Factor eLT			1.12						
Factor w _y Factor w _z			1.12						
			0.00						
Factor n _{pl} Maximum relative	alandamaaa) .	1.66						
Factor C _{yy}	sienderness	vrei,max	1.00						
Factor C _{yz}			0.93						
Factor C _{zy}			0.90						
Factor C _{zz}			1.00						
Unity check (6.61)	- 0.00 + 0.29	2 + 0.15 -				1			
Unity check (6.61)									
Shear Buckling cl According to EN 1		e 5 & 7 1	and formula (5.1	(0) & (71)					
Shear Buckling		<i>c 5 a i</i> .i		o) & (11)					
Buckling field len)()	m						
Web	<u> </u>	tiffened							
Web height h _w	181.		mm						
Web thickness t	9.4	.2	mm						
Material coefficien		,							
Shear correction f									
Shear Buckling	verification								
Web slenderness 1									
Web slenderness 1	limit 66.56								
Note: The web slen according to EN 19	993-1-5 article	5.1(2).	ear Buckling effe	ects may be ignor	red				
The member satisfi	es the stability	y check.							
EN 1993-1-1 Code National annex: Br		NA							
Member SB-3	0.000 / 1.700	m UC2	203/203/46 S	275 All ULS	0.34 -	7			
Combination ke	v					-			
All ULS / 1.20*LC		2 + 1.20*]	LC3 + 1.20*LC4						
Partial safety fa	ctors								
γ_{M0} for resistance	of cross-sectio	ons 1.00)						
γ_{M1} for resistance	to instability	1.00)						
γ_{M2} for resistance	of net sections	s 1.10)						
M / 1									
Material									
Yield strength fy	275.0	MPa							
Ultimate strength		MPa							
Fabrication	Rolled								
::SECTION CH	IECK::								
The critical check	is on positio	n 0.000 r	n						
Internal forces	Calculated	Unit							
N _{Ed}	9.73	kN							
V _{y,Ed}	-12.70	kN							
V _{z,Ed}	27.12	kN							
T _{Ed}	0.00	kNm							
M _{y,Ed}	0.00	kNm							
Mz.Ed	21.60	kNm	1						

Classification for cross-section design Classification according to EN 1993-1-1 article 5.5.2 Classification of Internal and Outstand parts according to EN 1993-1-1 Table 5.2 Sheet 1 & 2

kNm

21.60

 $M_{z,Ed}$

Calc	By	Project	t									Jo	b No.	
Calc	Date	Client										Pa	age No.	Revision
Id	Туре	c [mm]	t [mm]	σ ₁ [kN/m ²]	σ ₂ [kN/m ²]	Ψ [-]	kσ [-]	α [-]	c/t [-]	Class 1 Limit [-]	Class 2 Limit [-]	Class 3 Limit [-]	Class	
1	SO	88.0	11.0	-2.091e+04	-1.437e+05									
3	SO	88.0	11.0	1.759e+04	1.403e+05	0.13	0.54	1.00	8.00	8.32	9.24	14.33	1	
4	Ι	160.8	7.2	-1.656e+03	-1.656e+03									
5	SO	88.0	11.0	1.759e+04	1.403e+05	0.13	0.54	1.00	8.00	8.32	9.24	14.33	1	
7	SO	88.0	11.0	-2.091e+04	-1.437e+05									

Note: The Classification limits have been set according to Semi-Comp+.

The cross-section is classified as Class 1

Tension check

According to EN 1993-1-1 article 6.2.3 and formula (6.5)

А	5.8700e-03	m ²
N _{pl,Rd}	1614.25	kN
N _{u,Rd}	2065.17	kN
N _{t,Rd}	1614.25	kN
Unity check	0.01	-

Bending moment check for M_z

According to EN 1993-1-1 article 6.2.5 and formula (6.12),(6.13)

W _{pl,z}	2.3086e-04	m ³
M _{pl,z,Rd}	63.49	kNm
Unity check	0.34	-

Shear check for $V_{\ensuremath{\boldsymbol{y}}}$

According to EN 1993-1-1 article 6.2.6 and formula (6.17)

η	1.00	
Av	4.6045e-03	m ²
V _{pl,y,Rd}	731.06	kN
Unity check	0.02	-

Shear check for \mathbf{V}_z

According to EN 1993-1-1 article 6.2.6 and formula (6.17)

η	1.00	
Av	1.6944e-03	m ²
V _{pl,z,Rd}	269.02	kN
Unity check	0.10	-

Combined bending, axial force and shear force check

According to EN 1993-1-1 article 6.2.9.1 and formula (6.31)

M _{pl,z,Rd}	63.49	kNm
Unity check	0.34	-

Note: Since the shear forces are less than half the plastic shear resistances their effect on the moment resistances is neglected.

Note: Since the axial force satisfies criteria (6.35) of EN 1993-1-1 article 6.2.9.1(4) its effect on the moment resistance about the z-z axis is neglected.

The member satisfies the section check.

...::STABILITY CHECK::...

Classification for member buckling design

Decisive position for stability classification: 0.000 m

Classification according to EN 1993-1-1 article 5.5.2

Classification of Internal and Outstand parts according to EN 1993-1-1 Table 5.2 Sheet 1 & 2

Id	Туре	c [mm]	t [mm]	σ ₁ [kN/m ²]	σ ₂ [kN/m ²]	Ψ [-]	kσ [-]	α [-]	c/t [-]	Class 1 Limit [-]	Class 2 Limit [-]	Class 3 Limit [-]	Class
1	SO	88.0	11.0	-2.091e+04	-1.437e+05								
3	SO	88.0	11.0	1.759e+04	1.403e+05	0.13	0.54	1.00	8.00	8.32	9.24	14.33	1
4	Ι	160.8	7.2	-1.656e+03	-1.656e+03								
5	SO	88.0	11.0	1.759e+04	1.403e+05	0.13	0.54	1.00	8.00	8.32	9.24	14.33	1
7	SO	88.0	11.0	-2.091e+04	-1.437e+05								

Calc	Ву	Project	t									 J	ob No.	
Calc	Date	Client										I	Page No.	Rev
lote	: The Cl	assificatio	n limite	have been se	t according to	Semi-C	omn+							
			assified a		t according to	Senii ee	Jiip+.							
	r Buckli rding to	0		ele 5 & 7.1 ar	nd formula (5.	10) & (7	.1)							
She	ar Buck	ling par	ameters											
Bucl	kling fiel	d length	a 1.7	00 m	1									
Web			uns	stiffened										
	height l		18		im									
	thicknes		7.2		ım									
	erial coef													
Snea	ar correct	Ion Tacto	rη 1.0											
	ar Buck													
	slendern													
Web	slendern	ess limit	66.56											
			ness is s 1-5 articl		r Buckling ef	fects ma	y be igr	nored						
The 1	member s	satisfies 1	the stabili	ty check.										
EN 1	993-1-1	Code C	heck											
			n BS-EN	NA										
Mer	nber C-	1 0.000	0 / 3.000	m UC152/	152/37 S 2	275 A	II ULS	0.40	-					
Cor	nbinatio	ı kev												
		•	+ 1.40*LC	C2 + 1.60*LC	3									
				2 · 1100 EC	1									
	tial safe	•												
			cross-secti		_									
	for resist			1.00	_									
үм2	for resist	ance of f	net sectior	ns 1.10										
Ma	terial													
	d strengtl		275.0	MPa										
Ultir	nate stre	ngth f _u	430.0	MPa										
Fabr	rication		Rolled											
::S	ECTION	CHEC	K::											
Гhe	critical o	check is	on positi	on 0.000 m										
Inte	ernal for	·ces C	alculated	Unit										
NEd		-7	8.67	kN										
V _{y,E}	d	0.	00	kN										
V _{z,E}	d	7.	71	kN										
T _{Ed}			00	kNm										
M _{y,E}			00	kNm										
M _{z,E}	ld	0.	00	kNm										
			ss-section											
				1993-1-1 arti- utstand parts	according to	EN 1993	-1-1 Ta	ible 5.2	Sheet 1	& 2				
				-	-	-					CL	CL	C	1
Id	Туре	c [mm]	t [mm]	σ ₁ [kN/m ²]	σ ₂ [kN/m ²]	Ψ [-]	kσ [-]	α [-]	c/t	Class 1 Limit	Class 2 Limit	Class 3 Limit	Class	L
		[mm]	[mm]		[K: (/III -]	1-1			[-]	[-]	[-]	[-]		
1	SO	65.6	11.5	1.670e+04	1.670e+04	1.00	0.43	1.00	5.70	8.32	9.24	12.94	1	1
3	SO	65.6	11.5	1.670e+04 1.670e+04	1.670e+04	1.00	0.43	1.00	5.70	8.32	9.24	12.94	1	1
	I	123.6	8.0	1.670e+04	1.670e+04	1.00	0.15	1.00	15.45	25.88	31.43	35.13	1	1
4			11.5	1.670e+04	1.670e+04	1.00	0.43	1.00	5.70	8.32	9.24	12.94	1	1
	SO	65.6	11.5	1.0700.01										1
4 5 7	SO SO	65.6 65.6	11.5	1.670e+04	1.670e+04	1.00	0.43	1.00	5.70	8.32	9.24	12.94	1	

Calc	By	Project
------	----	---------

Calc Date Client

Compression check

According to EN 1993-1-1 article 6.2.4 and formula (6.9)

А	4.7100e-03	m ²
N _{c,Rd}	1295.25	kN
Unity check	0.06	-

Shear check for V_z

According to EN 1993-1-1 article 6.2.6 and formula (6.17)

η	1.00	
Av	1.4256e-03	m ²
V _{pl,z,Rd}	226.34	kN
Unity check	0.03	-

The member satisfies the section check.

...::STABILITY CHECK::...

Classification for member buckling design

Decisive position for stability classification: 3.000 m Classification according to EN 1993-1-1 article 5.5.2 Classification of Internal and Outstand parts according to EN 1993-1-1 Table 5.2 Sheet 1 & 2

Id	Туре	c [mm]	t [mm]	σ1 [kN/m ²]	σ2 [kN/m ²]	Ψ [-]	kσ [-]	α [-]	c/t [-]	Class 1 Limit [-]	Class 2 Limit [-]	Class 3 Limit [-]	Class
1	SO	65.6	11.5	-6.225e+04	-6.225e+04								
3	SO	65.6	11.5	-6.225e+04	-6.225e+04								
4	Ι	123.6	8.0	-4.828e+04	8.103e+04	-0.60		0.64	15.45	46.03	54.46	78.72	1
5	SO	65.6	11.5	9.500e+04	9.500e+04	1.00	0.43	1.00	5.70	8.32	9.24	12.94	1
7	SO	65.6	11.5	9.500e+04	9.500e+04	1.00	0.43	1.00	5.70	8.32	9.24	12.94	1

Note: The Classification limits have been set according to Semi-Comp+. The cross-section is classified as Class 1

Flexural Buckling check

According to EN 1993-1-1 article 6.3.1.1 and formula (6.46)

Buckling parameters	уу	zz	
Sway type	sway	non-sway	
System length L	3.000	3.000	m
Buckling factor k	2.42	1.00	
Buckling length L _{cr}	7.270	3.000	m
Critical Euler load N _{cr}	867.06	1626.52	kN
Slenderness λ	106.11	77.47	
Relative slenderness λ_{rel}	1.22	0.89	
Limit slenderness $\lambda_{rel,0}$	0.20	0.20	
Buckling curve	b	с	
Imperfection a	0.34	0.49	
Reduction factor χ	0.47	0.60	
Buckling resistance N _{b,Rd}	603.86	783.01	kN

Flexural Buckling verification					
Cross-section area A 4.7100e-03 m ²					
Buckling resistance N _{b,Rd}	603.86	kN			
Unity check 0.13 -					

Torsional(-Flexural) Buckling check

According to EN 1993-1-1 article 6.3.1.1 and formula (6.46) **Note:** For this I-section the Torsional(-Flexural) buckling resistance is higher than the resistance for Flexural buckling. Therefore Torsional(-Flexural) buckling is not printed on the output.

Bending and axial compression check

According to EN 1993-1-1 article 6.3.3 and formula (6.61),(6.62)

Page No. Revision

Job No.

Calc By

Project

Calc Date Client

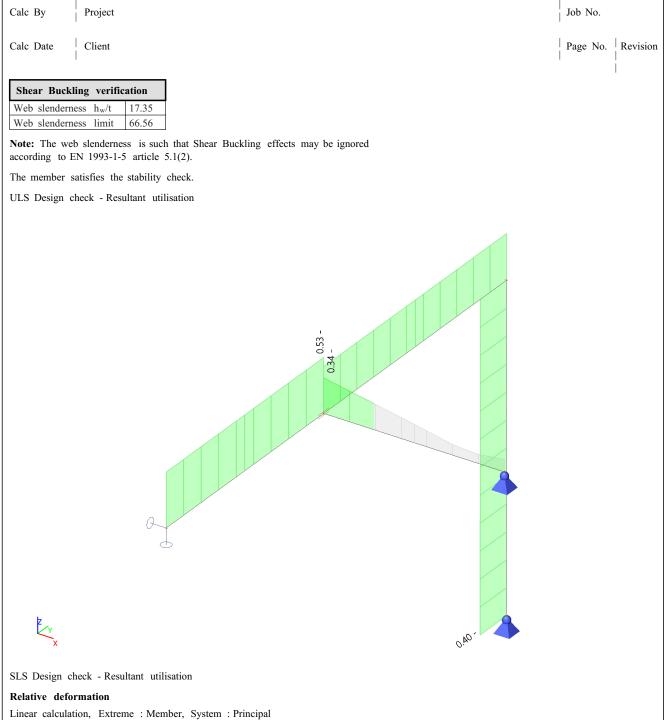
Bending and axial compression check parameters						
Interaction method	alternative method 1					
Cross-section area A	4.7100e-03	m ²				
Plastic section modulus W _{pl,y}	3.0876e-04	m ³				
Design compression force N _{Ed}	78.67	kN				
Design bending moment (maximum) My,Ed	23.13	kNm				
Design bending moment (maximum) M _{z,Ed}	0.00	kNm				
Characteristic compression resistance N _{Rk}	1295.25	kN				
Characteristic moment resistance My,Rk	84.91	kNm				
Reduction factor χ_y	0.47					
Reduction factor χ_z	0.60					
Modified reduction factor XLT,mod	1.00					
Interaction factor kyy	0.98					
Interaction factor k _{zy}	0.56					

Maximum moment $M_{y,Ed}$ is derived from beam C-1 position 3.000 m. Maximum moment $M_{z,Ed}$ is derived from beam C-1 position 0.000 m.

Interaction method 1 parameters		
Critical Euler load N _{cr,y}	867.06	kN
Critical Euler load N _{cr,z}	1626.52	kN
Elastic critical load N _{cr,T}	3985.33	kN
Plastic section modulus W _{pl,y}	3.0876e-04	m ³
Elastic section modulus Wel,y	2.7300e-04	m ³
Plastic section modulus W _{pl,z}	1.3958e-04	m ³
Elastic section modulus Wel,z	9.1500e-05	m ³
Second moment of area Iy	2.2109e-05	m ⁴
Second moment of area Iz	7.0625e-06	m ⁴
Torsional constant It	1.9200e-07	m ⁴
Method for equivalent moment factor Cmy,0	Table A.2 Line 1 (Linear)	
Ratio of end moments ψ_y	0.00	
Equivalent moment factor Cmy,0	0.78	
Factor µy	0.95	
Factor μ_z	0.98	
Factor ε_y	5.07	
Factor aLT	0.99	
Critical moment for uniform bending Mcr,0	200.36	kNm
Relative slenderness $\lambda_{rel,0}$	0.65	
Limit relative slenderness $\lambda_{rel,0,lim}$	0.26	
Equivalent moment factor Cmy	0.93	
Equivalent moment factor C _{mLT}	1.00	
Factor b _{LT}	0.00	
Factor d _{LT}	0.00	
Factor wy	1.13	
Factor wz	1.50	
Factor n _{pl}	0.06	
Maximum relative slenderness $\lambda_{rel,max}$	1.22	
Factor C _{yy}	0.99	
Factor C _{zy}	0.94	

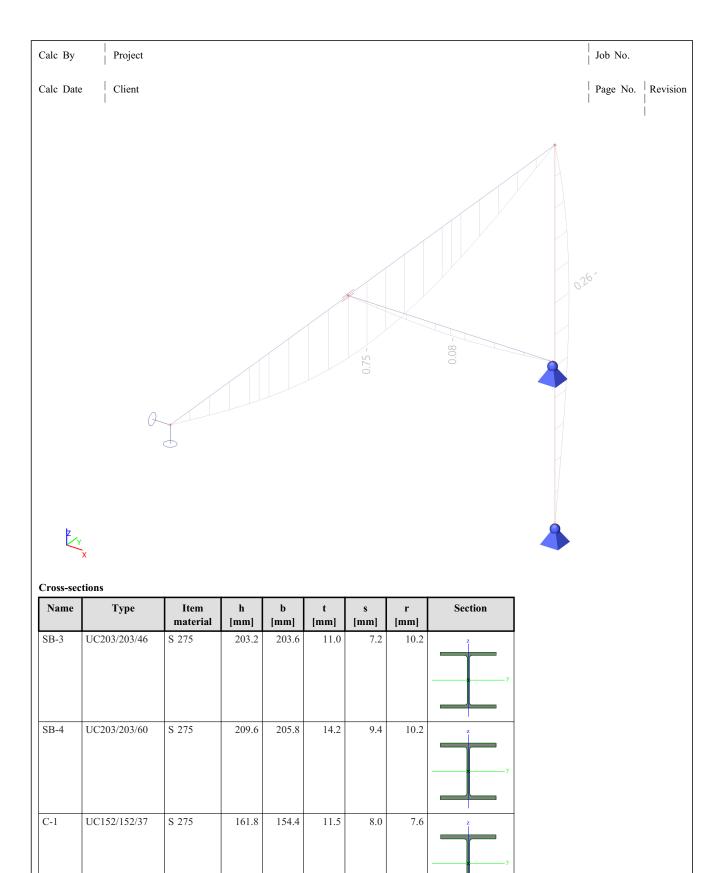
Unity check (6.61) = 0.13 + 0.27 + 0.00 = 0.40 -Unity check (6.62) = 0.10 + 0.15 + 0.00 = 0.25 -

Shear Buckling check


According to EN 1993-1-5 article 5 & 7.1 and formula (5.10) & (7.1)

Shear Buckling parameters

3.000	m
unstiffened	
138.8	mm
8.0	mm
0.92	
1.00	
	unstiffened 138.8 8.0 0.92

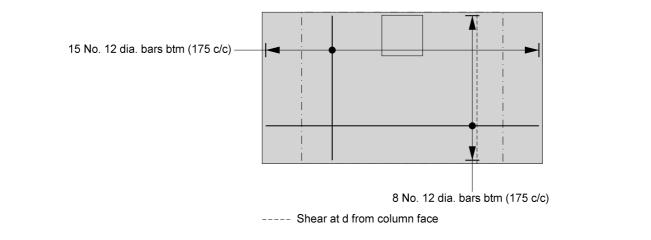

Job No.

Page No. Revision

Linear calculation, Extreme : Member, System Selection : All Class : All SLS

Member	dx [m]	Case - combination	uy [mm]	uz [mm]	Check uy [-]	Check uz [-]
SB-4	1.23	CO6/1	-1.3	-7.0	0.21	0.52
SB-4	4.80	CO6/1	8.0	0.0	1.11	0.00
SB-4	0.00	CO5/2	0.0	0.0	0.00	0.00
SB-4	2.45	CO6/1	0.7	-10.0	0.10	0.75
SB-3	0.73	CO6/1	-1.0	-0.4	0.22	0.08
SB-3	0.00	CO5/2	0.0	0.0	0.00	0.00
SB-3	0.85	CO6/1	-1.0	-0.4	0.21	0.08
C-1	0.00	CO5/2	0.0	0.0	0.00	0.00
C-1	3.00	CO6/1	8.0	0.0	0.80	0.00
C-1	1.75	CO6/3	2.4	-2.0	0.24	0.20
C-1	1.75	CO6/1	4.7	-1.4	0.47	0.26

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision


PAD FOOTING 1: COL	UMN C-1		
PAD FOOTING ANALYSIS A	AND DESIGN (BS8110-1:1997	<u>7)</u>	Tedds calculation version 2.0.07
	◀────1025───►	ן גע גע	redus calculation version 2.0.07
	1300	● 925	
	 ₄2	400	
Pad footing details Length of pad footing Depth of pad footing Density of concrete	L = 2400 mm h = 500 mm ρ_{conc} = 23.6 kN/m ³	Width of pad footing Depth of soil over pad footing	B = 1300 mm h _{soil} = 200 mm
Column details			
Column base length Column eccentricity in x	l _A = 350 mm e _{PxA} = 0 mm	Column base width Column eccentricity in y	b _A = 350 mm e _{PyA} = 450 mm
Soil details			
Depth of soil over pad footing	h _{soil} = 200 mm	Density of soil	$\rho_{soil} = 20.0 \text{ kN/m}^3$
Allowable bearing pressure	$P_{\text{bearing}} = 91 \text{ kN/m}^2$		
Axial loading on column	·		
Dead axial load	P _{GA} = 50.9 kN	Imposed axial load	P _{QA} = 4.6 kN
Wind axial load	$P_{WA} = 4.2 \text{ kN}$	Total axial load	$P_{\rm A} = 59.7 \rm kN$
Foundation loads			
Dead surcharge load	$F_{Gsur} = 3.000 \text{ kN/m}^2$	Imposed surcharge load	$F_{Qsur} = 2.000 \text{ kN/m}^2$
Pad footing self weight Soil self weight	$F_{swt} = 11.800 \text{ kN/m}^2$ $F_{soil} = 4.000 \text{ kN/m}^2$	Total foundation load	F = 64.9 kN
c			
Horizontal loading on pad foot Dead load in x direction	H _{GxA} = 0.0 kN	Dead load in y direction	H _{GyA} = 4.7 kN
Imposed load in x direction	$H_{QxA} = 0.0 \text{ kN}$ $H_{QxA} = 0.0 \text{ kN}$	Imposed load in y direction	$H_{GyA} = 4.7 \text{ kN}$ $H_{QyA} = 0.0 \text{ kN}$
Wind load in x direction	$H_{WxA} = 0.0 \text{ kN}$	Wind load in y direction	$H_{WyA} = 6.9 \text{ kN}$
Total load in x direction	$H_{xA} = 0.0 \text{ kN}$	Total load in y direction	$H_{yA} = 11.6 \text{ kN}$
Check stability against sliding			
Passive pressure coefficient	K _p = 2.464		
Stability against sliding in y di	rection		
Total sliding resistance in y dir	H _{yres} = 65.0 kN		
	PAS	S - Resistance to sliding is greater than	n horizontal load in y direction
Check stability against overtui	rning in y direction		
Total overturning moment	M _{yOT} = 5.795 kNm	Total restoring moment	Myres = 48.312 kNm
	PASS -	Restoring moment is greater than over	turning moment in y direction

Calc By	Project			Job No.
Calc Date	Client			Page No. Revisio
Total base Base react Calculate $q_1 = 0.000$	tion eccentricity in x a pad base pressures 0 kN/m ²	T = 124.6 kN $e_{Tx} = 0$ mm $q_2 = 89.273$ kN/m ²	q ₃ = 0.000 kN/m ²	ts outside of middle third of basis $q_4 = 89.273 \text{ kN/m}^2$
Minimum	base pressure 89.3 kN/r		Maximum base pressure SS - Maximum base pressure is less	q _{max} = 89.273 kN/m ² <i>than allowable bearing pressur</i> 89.3 kN/m ²
	0.0 kN/r	n²		0.0 kN/m ²
Dead load Wind load		$\begin{split} \gamma_{\rm fG} &= \textbf{1.40} \\ \gamma_{\rm fW} &= \textbf{0.00} \end{split}$	Imposed loads	γ _{IQ} = 1.60
Ultimate	axial load on column foundation loads foundation load	$P_{uA} = 78.7 \text{ kN}$ $F_u = 92.1 \text{ kN}$		
	horizontal loading on ontal load in x dir	a column $H_{xuA} = 0.0 \text{ kN}$	Ult. horizontal load in y dir	H _{yuA} = 6.6 kN
Ult.mome	moment on column nt on column in x dir	M _{xuA} = 0.000 kNm	Ult.moment on column in y di	r M _{yuA} = 0.000 kNm
Ultimate b	pad base reaction base reaction base reaction in x	T _u = 170.8 kN e _{Txu} = 0 mm	Ecc.of ult.base reaction in y	e _{Tyu} = 227 mm
q _{1u} = 0.00	e ultimate pad base pr 00 kN/m ² ult.base pressure	ressures q_{2u} = 112.070 kN/m ² q_{minu} = 0.000 kN/m ²	q _{3u} = 0.000 kN/m ² Maximum ult.base pressure	q _{4u} = 112.070 kN/m ² q _{maxu} = 112.070 kN/m ²
-	tem: Ultimate press moment in x dir	sures summaryUltimate mor M _x = 24.818 kNm	ments Ultimate moment in y dir	M _y = 3.680 kNm
	details			

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Fens.reinforcement diameter Design formula for rectangular Fens.reinforcement required Fens.reinforcement provided Moment design in y direction Fens.reinforcement diameter Design formula for rectangular	A _{s_x_req} = 129 mm ² 8 No. 12 dia. bars btm <i>PASS - Tension reinford</i> φ _{yB} = 12 mm	Tens.reinforcement depth $K_x = 0.003$ $K_x < K_x'$ compression rein Minimum tens.reinforcement $A_{s_xB_{prov}} = 905 \text{ mm}^2$ cement provided exceeds tensi Tens.reinforcement depth	$A_{s_x_{min}} = 845 \text{ mm}^2$
Fens.reinforcement required Fens.reinforcement provided Moment design in y direction Fens.reinforcement diameter	A _{s_x_req} = 129 mm ² 8 No. 12 dia. bars btm <i>PASS - Tension reinford</i> φ _{yB} = 12 mm	K _x < K _x ' compression rein Minimum tens.reinforcement A _{s_xB_prov} = 905 mm ² cement provided exceeds tensi Tens.reinforcement depth	nforcement is not require A _{s_x_min} = 845 mm ² fon reinforcement require
Cens.reinforcement provided Moment design in y direction Cens.reinforcement diameter	8 No. 12 dia. bars btm <i>PASS - Tension reinford</i> φ _{yB} = 12 mm	Minimum tens.reinforcement A _{s_xB_prov} = 905 mm ² <i>cement provided exceeds tensi</i> Tens.reinforcement depth	A _{s_x_min} = 845 mm ²
Cens.reinforcement provided Moment design in y direction Cens.reinforcement diameter	8 No. 12 dia. bars btm <i>PASS - Tension reinford</i> φ _{yB} = 12 mm	A _{s_xB_prov} = 905 mm ² cement provided exceeds tensi Tens.reinforcement depth	ion reinforcement require
Moment design in y direction Fens.reinforcement diameter	PASS - Tension reinford $\phi_{yB} = 12 \text{ mm}$	cement provided exceeds tensi Tens.reinforcement depth	
Fens.reinforcement diameter	$\phi_{yB} = 12 \text{ mm}$	Tens.reinforcement depth	
Fens.reinforcement diameter		*	d. – 452 mm
		*	
Jesign formula for rectangular	beams (ci 5.4.4.4)	V = 0.000	
		K _y = 0.000 Ky < Ky' compression rei	$K_y' = 0.156$
Fens.reinforcement required	$A_{s_y_req} = 20 \text{ mm}^2$	Minimum tens.reinforcement	$A_{s_y_{min}} = 1560 \text{ mm}^2$
Fens.reinforcement provided	15 No. 12 dia. bars btm	$A_{s_yB_{prov}} = 1696 \text{ mm}^2$	
rens.rennoreement provided		cement provided exceeds tensi	on reinforcement reauire
Colouloto ultimoto choon fonco d			
Calculate ultimate shear force a Jlt.pressure for shear	$q_{su} = 56.035 \text{ kN/m}^2$		
Area loaded for shear	$A_{s} = 0.653 \text{ m}^{2}$	Ult.shear force	V _{su} = 17.306 kN
		On.shear force	v _{su} – 17.500 KIV
Shear stresses at d from right f			
Design shear stress	$v_{su} = 0.029 \text{ N/mm}^2$		4 000 NT/ 2
Design concrete shear stress	v _c = 0.347 N/mm ²	Allowable design shear stress	$v_{max} = 4.382 \text{ N/mm}^2$
		$PA33 - V_{su} < V_c - NO She$	ear reinforcement require
Calculate ultimate punching sh			
Jlt.press.for punching shear	$q_{puA} = 94.420 \text{ kN/m}^2$	Avg.effective reinf.depth	d = 458 mm
Area loaded	$A_{pA} = 0.123 \text{ m}^2$	Length of shear perimeter	u _{pA} = 1400 mm
Ult.punching shear force	V _{puA} = 70.728 kN	Eff.punching shear force	V _{puAeff} = 70.728 kN
Punching shear stresses at face			
Design shear stress	$v_{puA} = 0.110 \text{ N/mm}^2$		
	PASS - Desig	in shear stress is less than allo	wable design shear stres
Calculate ultimate punching sh	ear force at perimeter of 1.5 d fi	rom face of column	
Ult.press.for punching shear	$q_{puA1.5d} = 54.707 \text{ kN/m}^2$	Avg.effective reinf.depth	d = 458 mm
Area loaded	$A_{pA1.5d} = 2.241 \text{ m}^2$	Length of shear perimeter	u _{pA1.5d} = 2600 mm
Ult.punching shear force	$V_{puA1.5d} = 22.230 \text{ kN}$	Eff.punching shear force	$V_{puA1.5deff} = 27.787 \text{ kN}$
Punching shear stresses at peri	meter of 1.5 d from face of colur	mn (cl 3.7.7.2)	
Design shear stress	$v_{puA1.5d} = 0.023 \text{ N/mm}^2$		
		PASS - VpuA1.5d < Vc - No she	ear reinforcement require

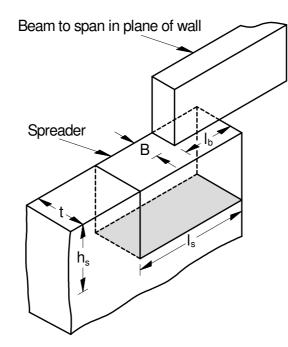
Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

 $- \cdot -$ Punching shear perimeter at 1.5 × d from column face

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

PADSTONE DESIGN SB-3

MASONRY BEARING DESIGN TO BS5628-1:2005


Masonry details

Masonry type Compressive strength Masonry units Partial safety factor Leaf thickness Wall height

Clay or calcium silicate bricks

$p_{unit} = 5.0 \text{ N/mm}^2$	Mortar designation	iv
Category II	Construction control	Normal
$\gamma_m = 3.5$	Characteristic strength	$f_k = 2.2 \text{ N/mm}^2$
t = 215 mm	Effective wall thickness	$t_{ef}=\textbf{215} \ mm$
h = 2700 mm	Effective height of wall	$h_{ef}=\textbf{2500}~mm$

TEDDS calculation version 1.0.05

Bearing details

Beam spanning in plane of wall			
Width of bearing	B = 203 mm	Length of bearing	$l_b = 200 \text{ mm}$
Loading details			
Concentrated dead load	G _k = 18 kN	Concentrated imposed load	$Q_k = 5 kN$
Design concentrated load	F = 32.6 kN		
Distributed dead load	g _k = 20.4 kN/m	Distributed imposed load	q _k = 5.8 kN/m
Design distributed load	f = 37.7 kN/m		
Masonry bearing type			
Bearing type	Туре 2	Bearing safety factor	$\gamma_{\text{bear}} = 1.50$
Check design bearing without a	spreader		
Design bearing stress	f _{ca} = 0.979 N/mm ²	Allowable bearing stress	$f_{cp} = 0.943 \text{ N/mm}^2$
	FAIL - Design bearing s	tress exceeds allowable beari	ing stress, use a spreader
Spreader details			
Length of spreader	l _s = 215 mm	Depth of spreader	h _s = 215 mm

Calc By	Project						Job No.		
Calc Date	Client						Page No.	Revision	
Edge distance $s_{edge} = 0 mm$									
Spreader	bearing typ	e							
Bearing ty		•	Туре 3		Bearing safety fac	tor 1	$\gamma_{\rm bear} = 2.00$		
	Check design bearing with a spreader								
				1 . 1.	n				
		ally within i	middle third – triang					2	
Design bea	aring stress		f _{ca} = 1.029 N/mm ²		Allowable bearing		f _{cp} = 1.257 N/mn		
					Allowable bearing	y stress exceed	s design bearn	ng stress	
		g at 0.4 × h	below the bearing l						
Design bea	aring stress		$f_{ca} = 0.294 \text{ N/mm}^2$		Allowable bearing		f _{cp} = 0.622 N/mm		
		PASS - A	llowable bearing	stress at 0.4	x h below beari	ng level exceed	s design beari	ng stress	

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

PADSTONE DESIGN SB-4

MASONRY BEARING DESIGN TO BS5628-1:2005

Masonry details

Masonry type

Autoclaved aerated concrete blocks

Compressive strength	$p_{unit} = 7.3 \text{ N/mm}^2$	Mortar designation	iii
Least horiz dim of units	$l_{unit} = 100 \text{ mm}$	Height of units	$h_{unit} = 215 mm$
Masonry units	Category II	Construction control	Normal
Partial safety factor	$\gamma_{\rm m}=3.5$	Characteristic strength	$f_k = 6.4 \text{ N/mm}^2$
Leaf thickness	t = 100 mm	Effective wall thickness	t _{ef} = 100 mm
Wall height	h = 2700 mm	Effective height of wall	h _{ef} = 2500 mm

TEDDS calculation version 1.0.05

Bearing details

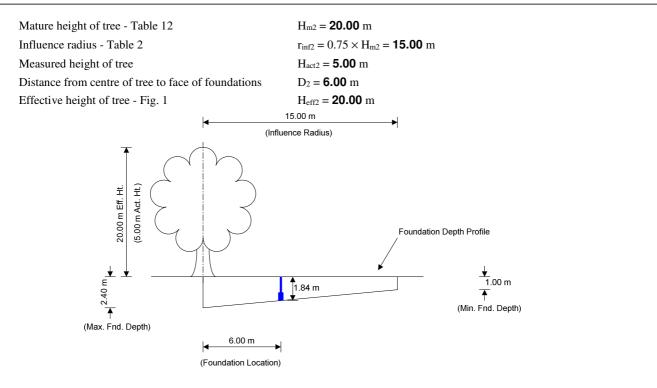
Beam spanning out of plane of w	vall		
Width of bearing	B = 203 mm	Length of bearing	$l_b = 100 \text{ mm}$
Edge distance	x _{edge} = 1300 mm		
Loading details			
Concentrated dead load	$G_k = 22 \text{ kN}$	Concentrated imposed load	$Q_k = 4 kN$
Design concentrated load	F = 36.9 kN		
Distributed dead load	g _k = 5.0 kN/m	Distributed imposed load	q _k = 2.0 kN/m
Design distributed load	f = 10.2 kN/m		
Masonry bearing type			
Bearing type	Type 2	Bearing safety factor	$\gamma_{\text{bear}} = 1.50$
Check design bearing without	a spreader		
Design bearing stress	$f_{ca} = 1.920 \text{ N/mm}^2$	Allowable bearing stress	f _{cp} = 2.743 N/mm ²
	PASS -	Allowable bearing stress exce	eds design bearing stress
Check design bearing at 0.4 × l	h below the bearing level		
Design bearing stress	$f_{ca} = 0.258 \text{ N/mm}^2$	Allowable bearing stress	$f_{cp} = 1.024 \text{ N/mm}^2$
PASS -	Allowable bearing stress at 0.4	4 × h below bearing level exce	eds design bearing stress

Calc By	Project	Job No.	
Calc Date	Client	Page No.	Revision

Tedds calculation version 2.0.02

FOUNDATIONS NEAR TREES (NHBC)

FOUNDATIONS NEAR TREES

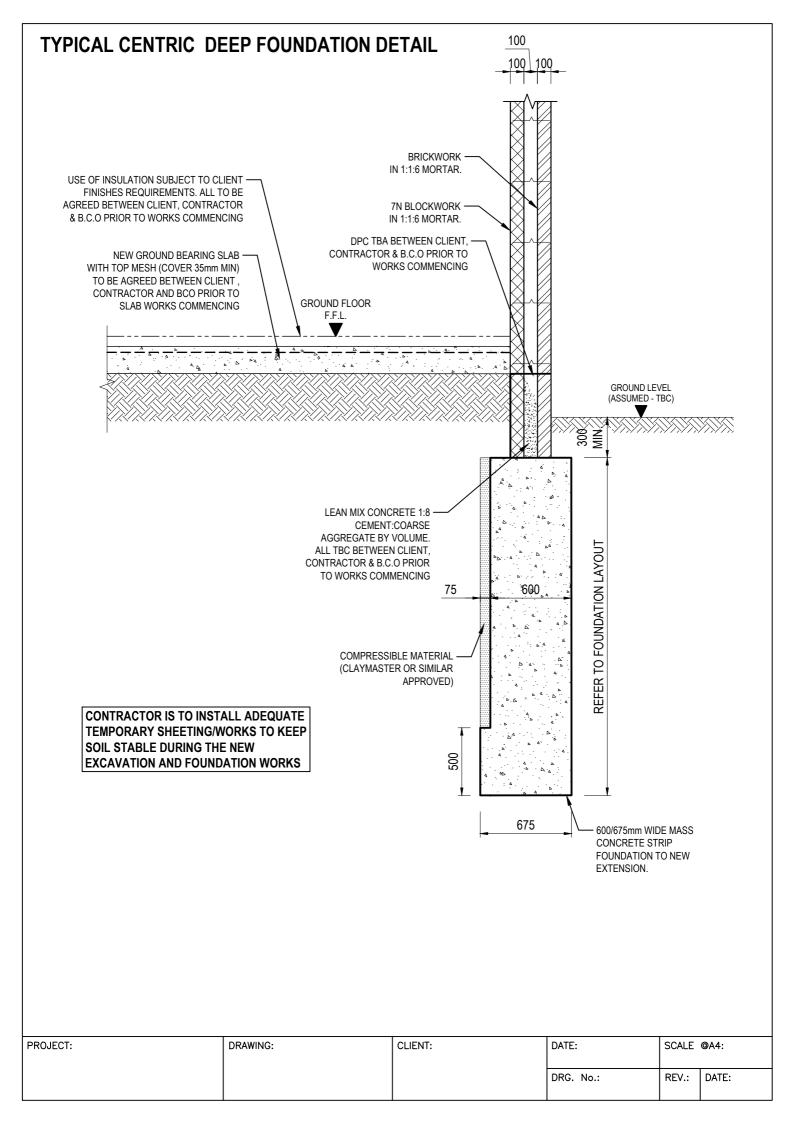

In accordance with Appendix B of NHBC Part 4: Foundations - Chapter 4.2

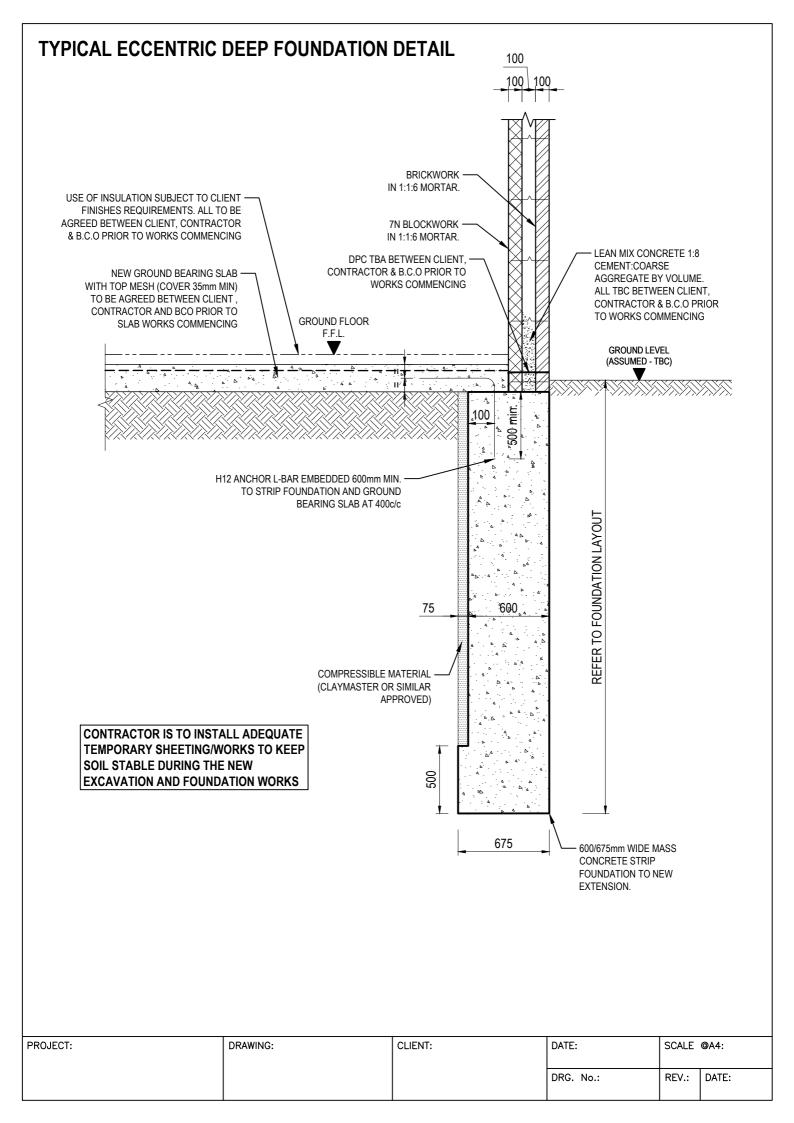
Site Details Site location London $Z_c = 0.00 \text{ m}$ Reduction depth due to climate variations - Fig. 13 Soil Details Plasticity index from lab tests $I_p = 40 \%$ p425 = **100** % Percentage of particles < 425 μ m Modified plasticity index - cl. D5(b) I'_p = $I_p \times p_{425}$ / 100 % = **40** % Volume change potential - Table 1 High **Details for Tree - 1** Broad leaf - Beech Species of tree The tree is to remain at the site, with no further planting allowed. Water demand of tree - Table 12 Moderate $H_{m1} = 20.00 \text{ m}$ Mature height of tree - Table 12 Influence radius - Table 2 $r_{inf1} = 0.75 \times H_{m1} = 15.00 \text{ m}$ Measured height of tree Hact1 = 5.00 m Distance from centre of tree to face of foundations D₁ = **3.20** m Effective height of tree - Fig. 1 H_{eff1} = **20.00** m 15.00 m (Influence Radius) (5.00 m Act. Ht.) 20.00 m Eff. Ht. Foundation Depth Profile _ 1.00 m 2.40 m 2.10 m (Min. Fnd. Depth) . (Max. Fnd. Depth) **3.20 m** (Foundation Location)

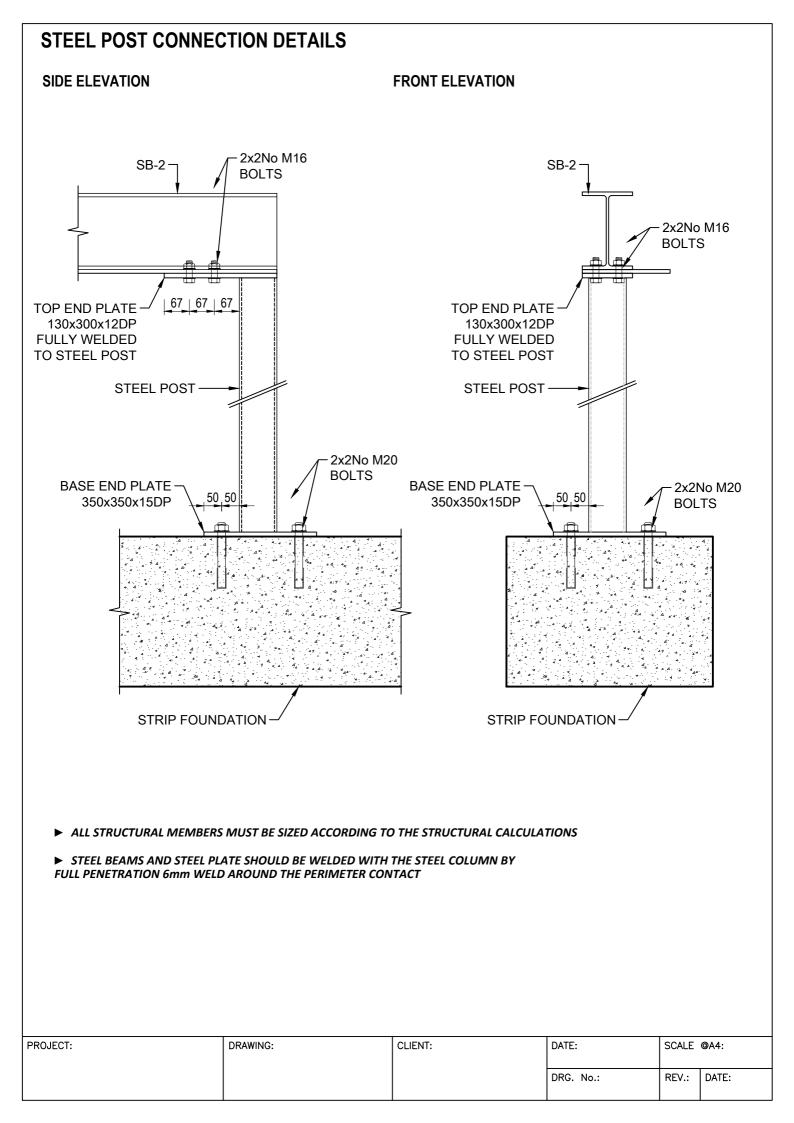
Minimum foundation depth - Table 5 $Z_{min} = 1.00$ mLook up value for foundation depth - Chart 1 Soils with HIGH volume

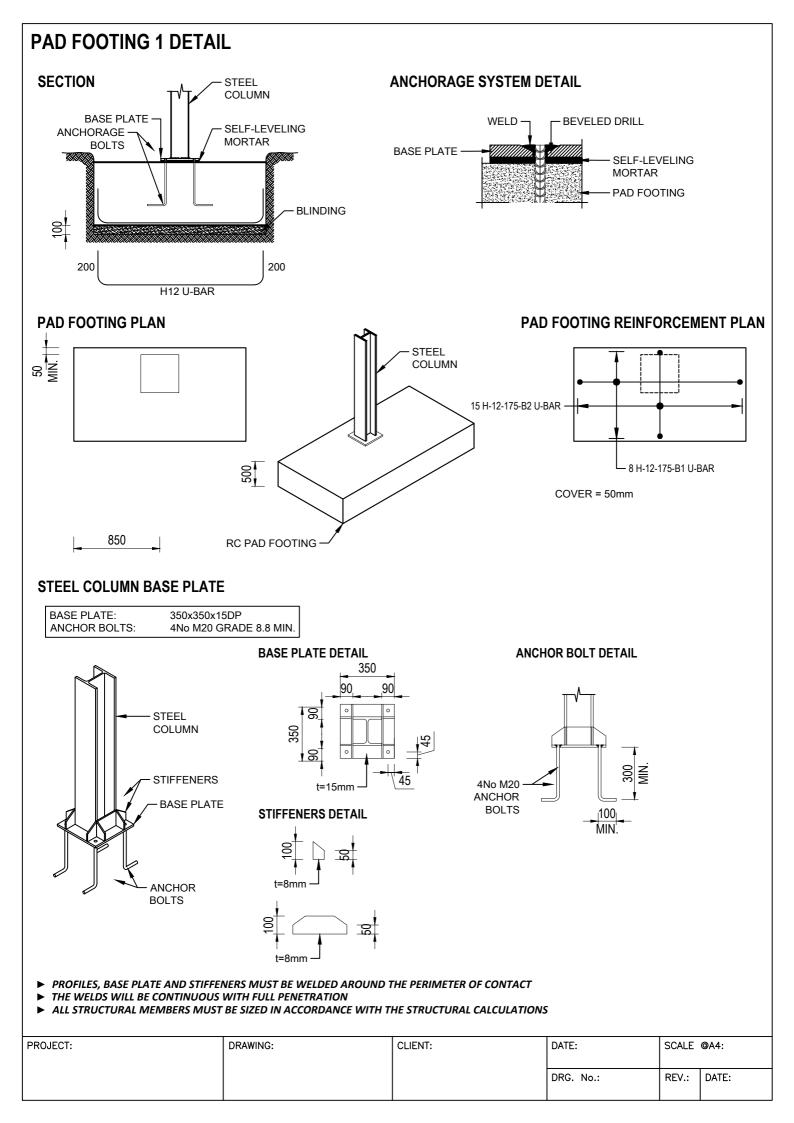
	change potential
	$Z_{\text{LookUp1}} = 2.10 \text{ m}$
Required foundation depth	$Z_{req1} = Z_{LookUp1} - Z_c = 2.10 \text{ m}$
Details for Tree - 2	
Species of tree	Broad leaf - Beech
The tree is to remain at the site, with no further planting	ng allowed.
Water demand of tree - Table 12	Moderate

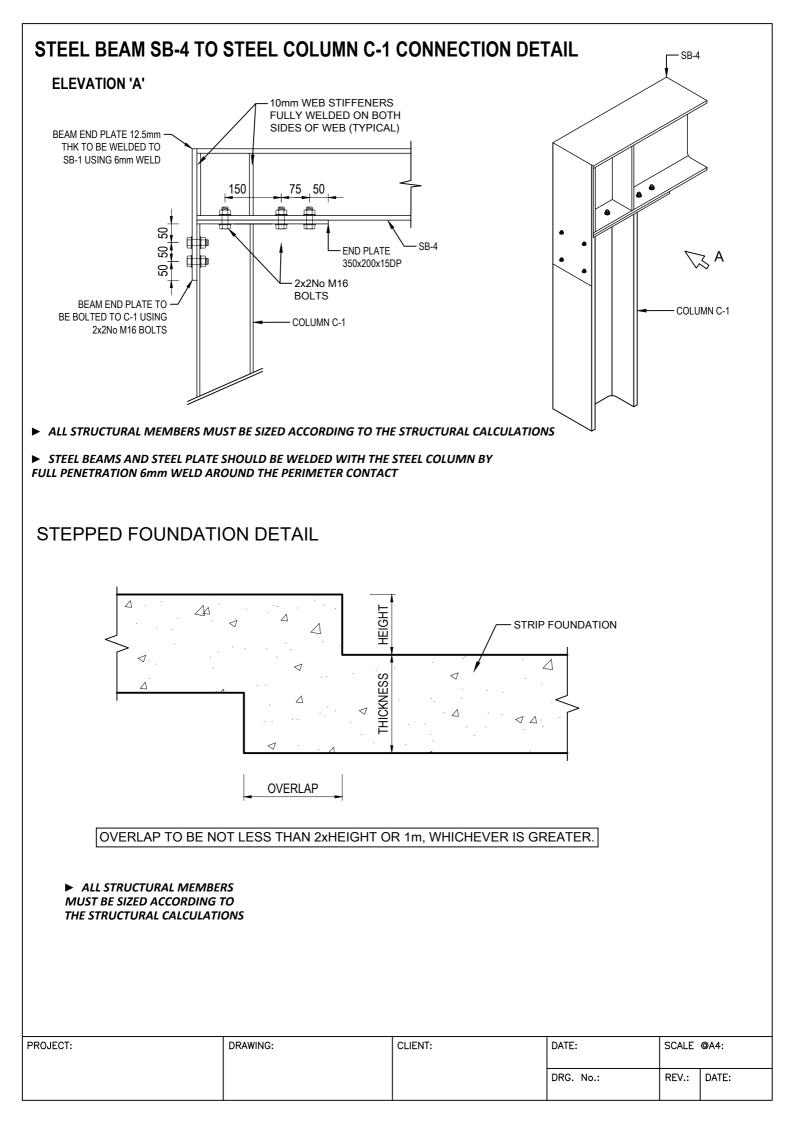
Calc By	Project	Job No.	
Calc Date	Client	Page No. 48	Revision

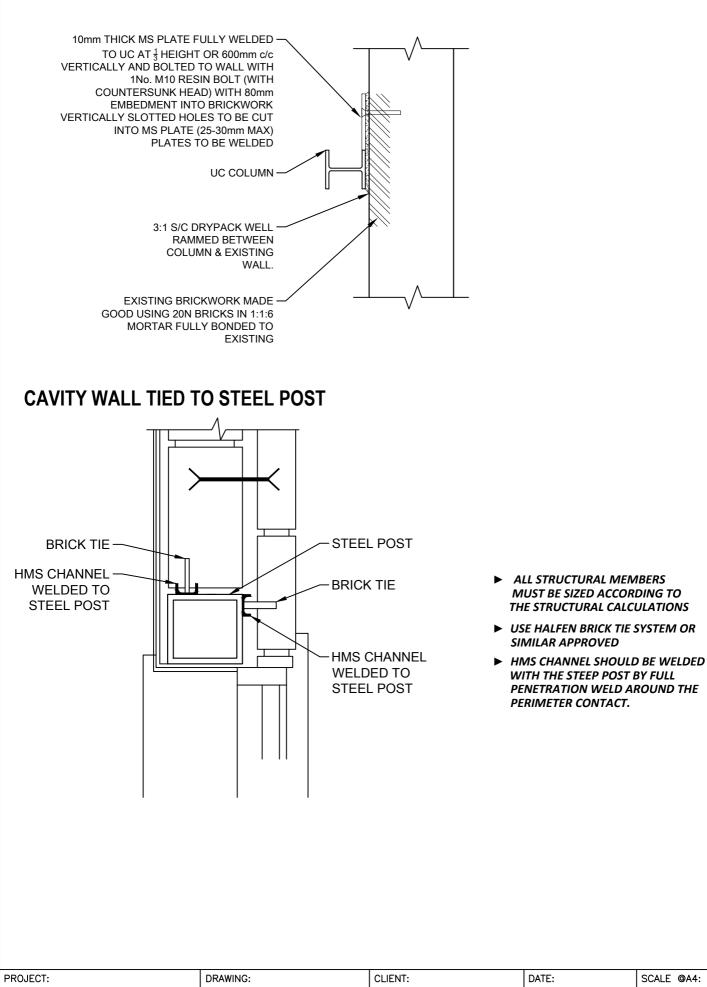


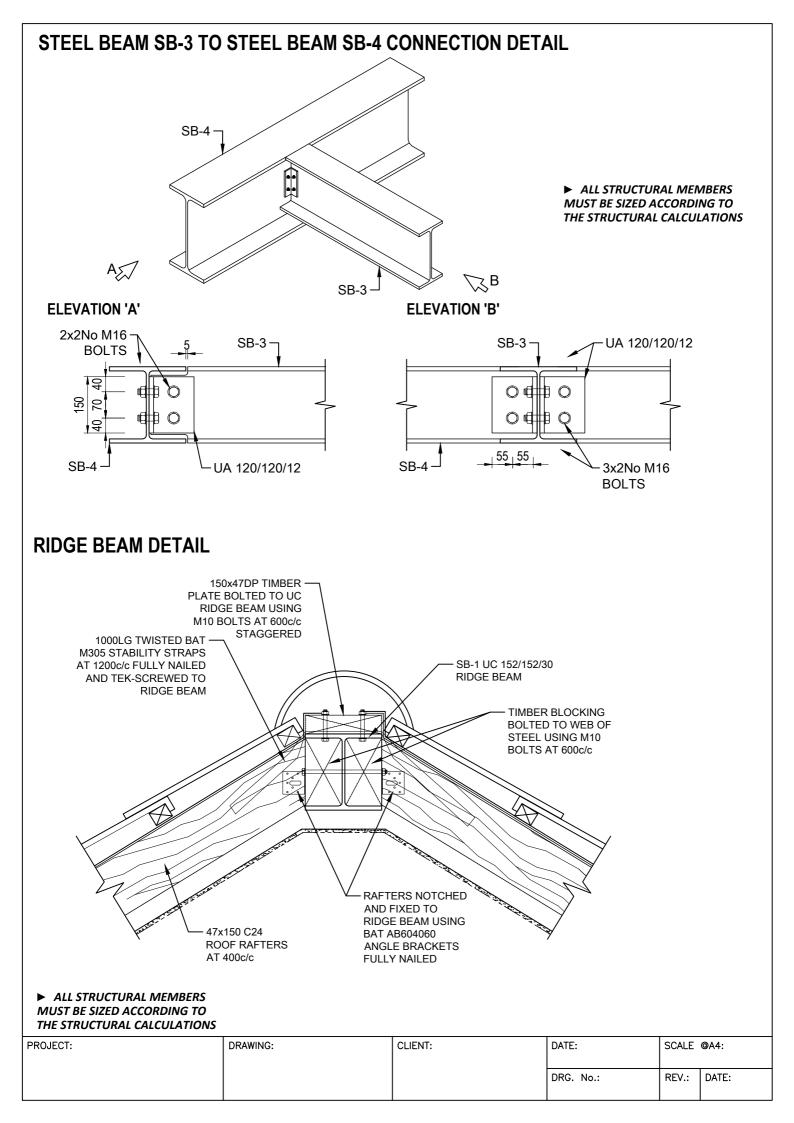

change potential
$$\begin{split} &Z_{\rm LookUp2} = \textbf{1.84} \ m \\ &Z_{\rm req2} = Z_{\rm LookUp2} - Z_{\rm c} = \textbf{1.84} \ m \end{split}$$

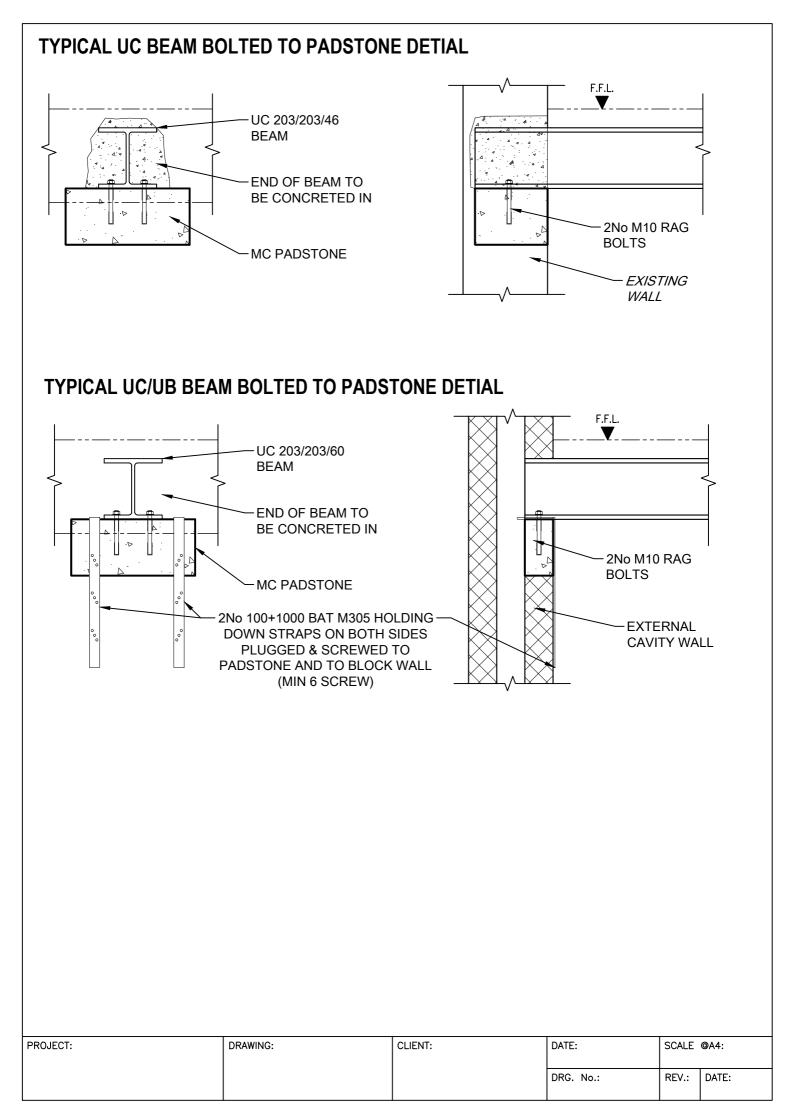

Required foundation depth

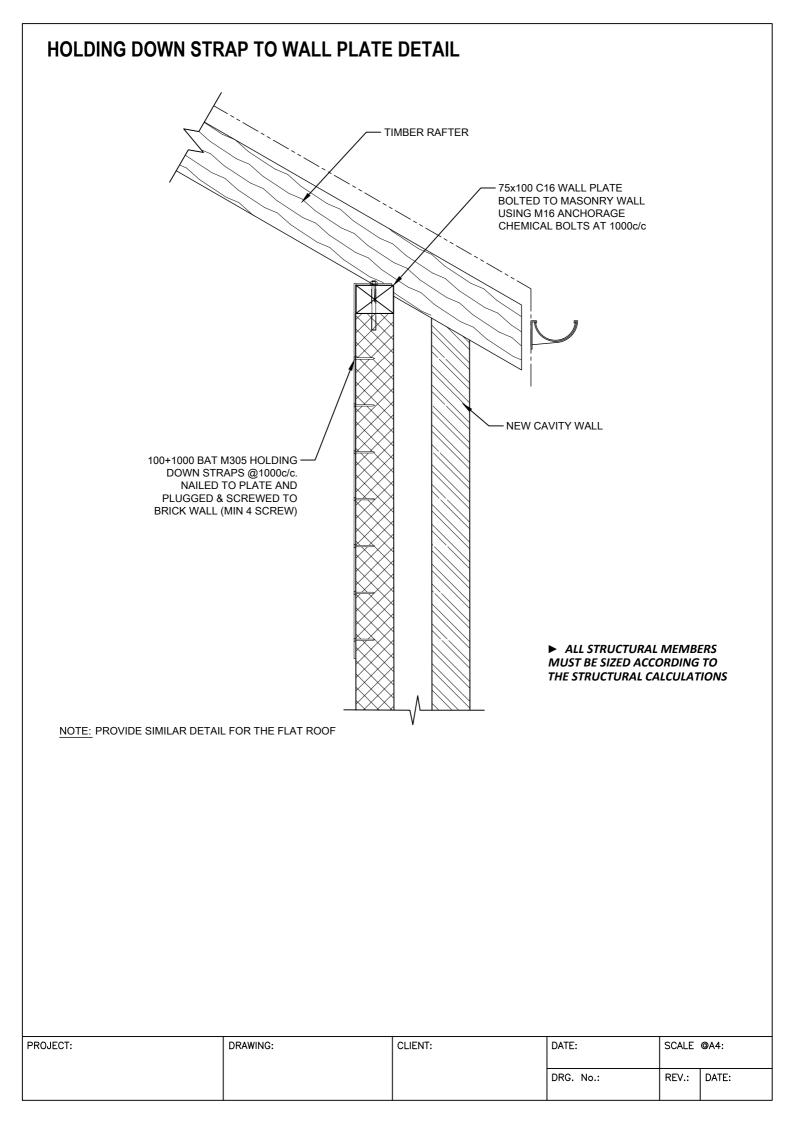

Summary Table

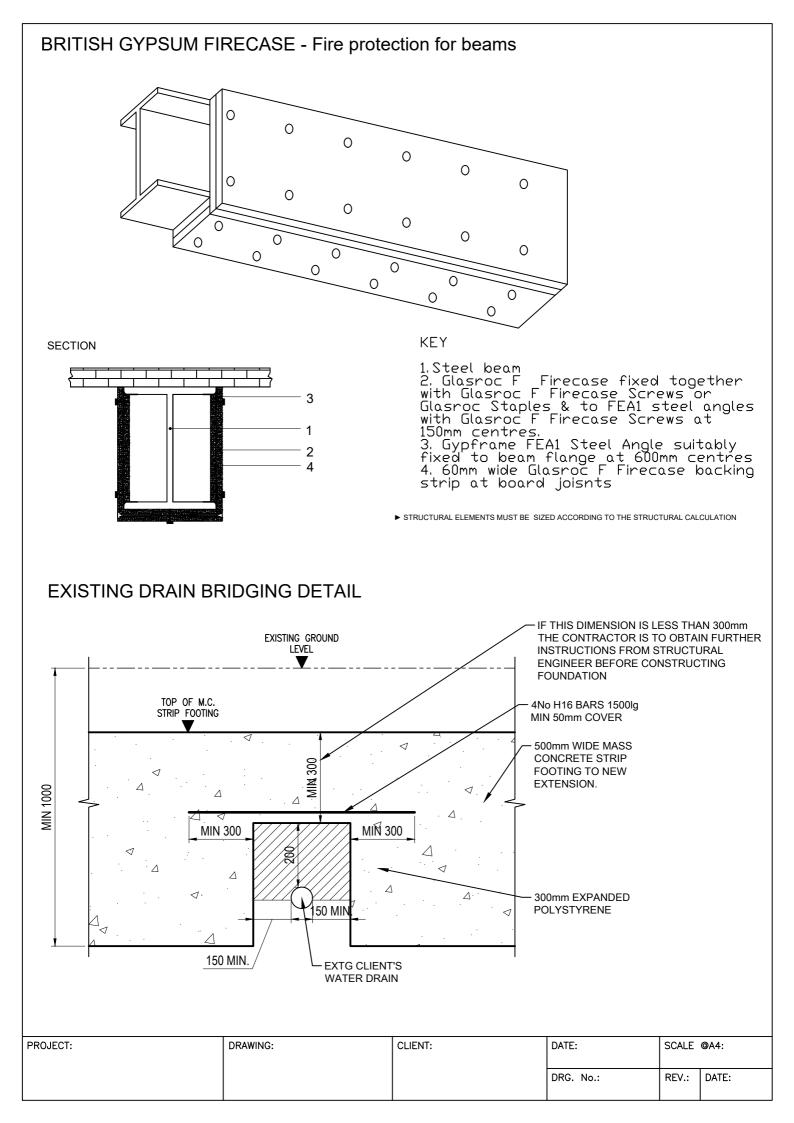

Tree	Name	Distance (m)	Measured Height (m)	Effective Height (m)	Tree to be removed	Required Foundation Depth (m)	
1	Beech	3.2	5.0	20.0	No	2.10	
2	Beech	6.0	5.0	20.0	No	1.84	






TYPICAL INTERNAL COLUMN TIE DETAIL




 PROJECT:
 DRAWING:
 CLIENT:
 DATE:
 SCALE
 @A4:

 DRG. No.:
 REV.:
 DATE:
 DATE:

METHOD STATEMENT FOR STEEL BEAM INSTALLATION

- 1. Check the original construction techniques for correct type of temporary works.
- 2. Check condition of existing brickwork break out and replace any badly damaged bricks, re-point mortar as required. Ensure any repairs to brickwork is checked and approved by BCO before works commence.
- 3. Support existing wall above intended beam by Needle Masonry Supports which are supported by Acrow props each 500mm. Install Acrow props support from interior or exterior (not from both side) on the existing (concrete or soil) ground, not on the joist floor. Under Acrow props use wooden or concrete base plate minimum 100x500x500mm.
- 4. Temporary support installation:
 - a) Mark the wall in the correct position where the steel needles are to be inserted
 - b) Scrape or grind out the mortar, or remove a brick prior to insertion of the needles in the identified position. Always ensure the underside of the brick to be supported is clean and will sit flat on the blade of the needles.
 - c) Insert the blade into the mortar space or brick hole until the blade is at least at the same depth as the rear of the brick on the leaf of the wall is intended to be supported. Where possible the needles should be inserted until the tip of the web is nearly touching the wall.
 - d) Ensuring the prop remains completely vertical and in plumb, tighten the collar of the prop until Strongboy and prop are fully engaged with the wall and do not move. Do not over tighten as that may cause the blade to bend or damage the brickwork. Hand tight is generally sufficient.
- 4. For point load use extra temporary support/s.
- 5. Make sure the wall is supported properly by temporary support.
- 6. Knock down wall carefully under temporary support.
- 7. Install beam from free side of the opening.
- 8. Make sure that existing wall is supported properly by new steel beam.
- 9. Remove temporary support.

METHOD STATEMENT FOR POURING STRIP FOUNDATION

- 1. The contractor to locate and protect any existing buried services.
- 2. Pouring and excavation sequences are to be not longer than shown on foundation drawing.
- 3. Poring and excavation is to be carried out in order of shown sequences below starting with no. 1 only if new foundation is to be poured nearby existing neighbor's/adjoining foundation. This to be confirmed by the Building Control Officer on site.
- 4. Not less than 48 hours after casting blocks (1) excavate adjacent blocks.
- 5. Continue the above sequence until the perimeter foundation is casted.
- 6. Under no circumstances shall two simultaneous excavations be made on both sides of a length of wall.
- 7. Before casting concrete the underside of the already casted footing to be thoroughly cleaned to remove any soil adhering to the underside and then given a coat of rich cement grout to prime the surface.
- 8. No excavation to be left open for more than three hours before placing the concrete.
- 9. Not less than 48 hours after pouring the concrete the side sutter may be released.
- 10. The concrete is to be thoroughly vibrated with a mechanical poker to ensure maximum compaction.
- 11. If during excavation material is found to be significantly different from exposed in trial pits, the contractor shall inform the Engineer who may visit site to inspect the excavation.
- 12. Do not use concrete grade less than C20.

GENERIC POURING SCHEDULE

	5 2 4 6 4 2	NEW FO	DUNDATION		
PROJECT:	DRAWING:	CLIENT:	DATE:	SCALE (@A4:
			DRG. No.:	REV.:	DATE:

GENERAL NOTES:

- 1. THE STRUCTURAL SPECIFICATION WITHIN THIS DOCUMENT IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTURAL DRAWINGS. THE STANDARD NOTES THAT ARE CONTAINED ON THE DRAWINGS AND ANY OTHER RELEVANT PROJECT INFORMATION
- 2. THE DRAWINGS WITHIN THIS DOCUMENT ARE INDICATIVE ONLY, AND REPRESENT DESIGN INTENT ONLY. NO DIMENSIONS ARE TO BE SCALED FROM DRAWINGS CONTAINED WITHIN THIS DOCUMENT. REFER TO THE ARCHITECTURAL DRAWINGS FOR ALL DIMENSIONS. ALL DIMENSIONS SHOULD BE CHECKED ON SITE BY THE CONTRACTOR BEFORE FABRICATION AND ORDERING OF MATERIALS.
- 3 UNLESS NOTED OTHERWISE ALL DIMENSIONS ARE IN MILLIMETRES AND ALL LEVELS ARE IN METRES FROM THE SITE DATUM.
- 4 THE INFORMATION WITHIN THIS DOCUMENT CANNOT BE GUARANTEED AS DIMENSIONALLY EXACT. FIGURED DIMENSIONS MUST BE USED FOR SETTING OUT AND DETAILING.
- 5. THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN OF ALL TEMPORARY WORKS, AND IS ALSO RESPONSIBLE FOR THE SAFE MAINTENANCE AND STABILITY OF THE EXISTING BUILDING/S AT ALL TIMES.
- 6. ALL PARTY WALL AWARDS ARE ENTIRELY THE RESPONSIBILITY OF THE CLIENT
- 7. THE CONTRACTOR (OR CLIENT) MUST REPORT ANY DIFFERENCES BETWEEN THE STRUCTURAL DRAWINGS AND SITE CONDITIONS TO THE STRUCTURAL ENGINEER.
- 8. THE CONTRACTOR (OR CLIENT) MUST NOTIFY THE STRUCTURAL ENGINEER OF ANY DESIGN CHANGES THAT COULD AFFECT THE STRUCTURAL SPECIFICATION BEFORE WORK COMMENCES
- 9. THE CONTRACTOR SHALL AT THE OUTSET. ESTABLISH WITH THE LOCAL AUTHORITY THEIR REQUIREMENTS FOR INSPECTING THE WORKS, AND ADHERE TO THESE
- 10. ALL DIMENSIONS AND LEVELS SHOWN ON THE DRAWINGS ARE BASED ON SURVEY DRAWINGS AND THE CONTRACTOR IS TO SATISFY HIMSELF THAT DIMENSIONS, LEVELS, ETC., ARE SUFFICIENTLY ACCURATE AND COMPLETE FOR FABRICATION WITHIN THE SPECIFIED TOLERANCES OF ALL PREFABRICATED ELEMENTS.
- 11. IF IN DOUBT ABOUT THE INFORMATION SHOWN OT THIS DRAWING OR ANY RELATED DRAWINGS - PLEASE ASK.
- 12. THE CONTRACTOR HAS SOLE RESPONSIBILITY FOR THE DESIGN OF ALL TEMPORARY WORKS.
- 13. ALL LINTELS TO HAVE A MINIMUM 150mm END BEARING INTO NEW/EXISTING WALL.
- 14. ALL EXISTING LINTELS ARE TO BE INSPECTED AND REPLACED IF THEY SHOW SIGNS OF DETERIORATION, CRACKING OR DISTRESS. THE MATERIAL NATURE OF ANY REPLACEMENT IS TO BE APPROVED BY THE LOCAL AUTHORITY PRIOR TO INSTALLATION
- 15. ALL EXISTING WALLS TO BE EXAMINED BY THE CONTRACTOR FOR LACK OF BOND/DELAMINATION, ETC. IF SUCH AREAS ARE NOTED, THE CLIENT'S ENGINEER IS TO BE INFORMED IMMEDIATELY. THE CONTRACTOR SHALL ARRANGE FOR THE DESIGN AND INSTALLATION OF A SUITABLE REMEDIAL TIE SYSTEM.
- 16. SHOULD ANY EXISTING WALL PROVE TO BE INADEQUATELY RESTRAINED. THE CONTRACTOR ALLOW FOR THE DESIGN AND INSTALLATION OF SUITABLE REMEDIAL WORKS TO PROVIDE ADEQUATE LATERAL RESTRAINT AND SUBMIT THE DESIGN TO THE LOCAL AUTHORITY FOR APPROVAL
- 17. THE CONTRACTOR IS TO PROVIDE TEMPORARY WORKS TO PROVIDE LATERAL AND VERTICAL RESTRAINT TO EXISTING WALLS PRIOR TO DEMOLITION OF ANY PART OF 3. THE ENDS OF ALL BEAMS ARE TO BE PROPERLY SAWN/MACHINED, IN THE THE EXISTING BUILDING COMMENCING
- 18. IN ALL CASES THE EXISTING WALLS WILL REQUIRE THE FOLLOWING REMEDIAL WORKS: i) ALL EXISTING STEELWORK AND TIMBERS REQUIRED TO BE CAREFULLY REMOVED. THE CONTRACTOR SHOULD OBTAIN THE APPROVAL OF THE RELEVANT LOCAL AUTHORITIES PRIOR TO THIS WORK BEING CARRIED OUT.

ii) ALL MINOR CRACKS TO BE REPAIRED USING 1:1:6 MORTAR.

iii) ANY MORTAR/BRICKWORK THAT IS JUDGED BY THE CONTRACTOR OR THE CLIENT'S ENGINEER OR THE LOCAL AUTHORITY REPRESENTATIVE TO BE CRUMBLY, SOFT, DETERIORATED, ETC., IS TO BE REMOVED AND REBUILT IN BONDED ENGINEERING BRICK. FACING BRICK OR BLOCK AS APPROPRIATE.

iv) ALL EXISTING INTERNAL MASONRY WALL OPENINGS NO LONGER REQUIRED ARE TO BE IN-FILLED IN BONDED BRICK/BLOCK AS APPROPRIATE.

v) ALL STRAIGHT JOINTS ARE TO BE TIED ACROSS BY MEANS OF PROPRIETARY GALVANIZED STEEL STRAPPING.

vi) IF CRACKS WITH AN APERTURE GREATER THAN 2mm ARE UNCOVERED. THE CONTRACTOR SHALL PROVIDE STITCHING USING 900mm LONG x 100mm WIDE x 65mm DEEP PRE-CAST CONCRETE LINTELS AT 900mm CENTRES VERTICALLY. THE LINTELS ARE TO BE INSERTED ON A 1:1:6 MORTAR BED AND PACKED WITH A 1:1:6 SEMI-DRY MORTAR WELL RAMMED.

19. JOISTS ARE TO BE DOUBLED-UP BELOW ALL STUD PARTITIONS. THE JOISTS TO BE BOLTED TOGETHER AT 600mm CENTRES USING M12 GR. 4.6 BOLTS WITH 50mm SQUARE PLATE WASHERS EACH SIDE AND DOUBLE SIDED TOOTHED PLATE CONNECTORS

FOUNDATION AND GROUND FLOOR NOTES:

- 1. THE MAIN CONTRACTOR TO ENSURE THAT THE GROUND BEARING STRATA, MINIMUM BEARING DEPTHS AND GENERAL RECOMMENDATIONS OF THE SOIL INVESTIGATION ARE ADHERED TO.
- 2. THE MAIN CONTRACTOR TO UNDERTAKE EXPLORATORY EXCAVATIONS ADJACENT TO ANY EXISTING BUILDINGS AND SERVICES TO DETERMINE NATURE 2. BRICK AND BLOCK STRENGTHS SHOWN ARE MINIMUM AND DEPTH OF EXISTING FOOTINGS ETC. CONTRACTOR TO ENSURE THAT ALL FOUNDATIONS TO EXISTING BUILDINGS AND UNDERGROUND SERVICES ARE NOT UNDERMINED OR DISTURBED IN ANY WAY DURING THE CONSTRUCTION WORKS.
- 3. CONTRACTOR TO BE RESPONSIBLE FOR ALL TEMPORARY WORKS DURING CONSTRUCTION OF THE SUPERSTRUCTURE AND FOUNDATIONS TO ENSURE THAT ALL ADJACENT BUILDINGS, ROADS, FOOTPATHS AND SERVICES ETC. REMAIN STABLE AND FREE FROM DAMAGE
- 4. FOUNDATIONS ARE TO BE TAKEN DOWN TO THE DEPTHS SHOWN ON THIS DRAWING. TO BE CHECKED ON-SITE BY BUILDING CONTROL OFFICER/ENGINEER PRIOR TO CONSTRUCTION
- 5. UNLESS NOTED OTHERWISE THUS: (600) ALL FOUNDATIONS TO BE A MINIMUM 600MM WIDE, CENTRED ON THE GRID LOCATION OVER.
- 6. ALL FORMATION LEVELS, SHUTTERS AND REINFORCEMENT TO BE CHECKED ON-SITE BY THE BUILDING CONTROL OFFICER PRIOR TO CONSTRUCTION.
- 7. ANY EXCAVATIONS LIABLE TO REMAIN EXPOSED TO THE ELEMENTS IN EXCESS OF 24 HOURS PRIOR TO CONCRETING (OR LESS IN INCLEMENT WEATHER) ARE TO RECEIVE 50MM PROTECTIVE BLINDING CONCRETE.
- 8. IN COHESIVE SOILS THE VERTICAL FACES OF ALL EXCAVATIONS MUST BE SUFFICIENTLY SMOOTH TO ALLOW MOVEMENT OF THE SOIL TO TAKE PLACE WITHOUT DISTURBING THE FOUNDATION.
- 9. FOUNDATIONS MAY BE TRENCH FILLED BUT THE TOP LEVEL OF CONCRETE MUST SUIT BRICK COURSING AND FINAL GROUND LEVELS.
- 10. NO SERVICE MAY BE BUILT THROUGH OR CAST INTO FOUNDATIONS WITHOUT THE ENGINEERS APPROVAL.
- 11. WHERE BLOCKWORK WALLING BELOW GROUND LEVEL IS IN EXCESS OF 900MM HIGH THEN 215MM THICK BLOCK WORK IS TO BE ADOPTED (BLOCKS LAID FLAT AND COURSED TO 225MM VERTICAL CENTERS). BACK FILLING IS TO BE CARRIED OUT EQUALLY EITHER SIDE OF WALLING AND TO BE OF AN APPROVED, WELL GRADED GRANULAR MATERIAL
- 12. FOR EXISTING MANHOLES/DRAINRUNS/SERVICES REFERENCE IS TO BE MADE TO THE ARCHITECTURAL DRAWINGS. THE DEPTH AND POSITIONS OF ALL EXISTING SERVICES ARE TO BE CHECKED ON SITE BY THE CONTRACTOR PRIOR TO COMMENCING WORK AND ANY VARIATION WITH THE ARCHITECTURAL DRAWINGS IS TO BE REPORTED TO THEM PRIOR TO PROCEEDING. IF ANY DAMAGE IS CAUSED TO THE EXISTING RUNS/SERVICES DURING THESE WORKS BY THE CONTRACTOR ANY MAKING GOOD WILL BE AT THE CONTRACTORS OWN COST

STEELWORK NOTES:

- STRUCTURAL STEELWORK DESIGN TO BS5950-1:2000. 1
- 2. DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEELWORK TO COMPLY WITH THE LATEST EDITION OF THE NATIONAL STRUCTURAL STEELWORK SPECIFICATION (N.S.S.S.)
- FABRICATION WORKSHOP, TO ENSURE A CLOSE BEARING FIT BETWEEN FLANGES AND END PLATES.
- ALL HOT ROLLED STRUCTURAL STEELWORK TO BE MILD STEEL TO GRADE S275JR TO BS EN 10025:1993, AND HOLLOW SECTIONS GRADE S355J2H TO BS EN 10210-1.
- 5. INTERNAL STEELWORK TO BE BLAST CLEANED TO SA2¹/₂ TO RECEIVE SHOP APPLIED ZINC PHOSPHATE EPOXY PRIMER (80 MICRONS)

EXTERNAL STEELWORK - TO BE EITHER BLAST CLEANED TO SA2 AND HOT DIPPED GALVANISED (140 MICRONS) OR CHEMICALLY CLEANED AND HOT DIPPED GALVANISED (85 MICRONS).

- THE STEELWORK FABRICATOR IS TO CONDUCT AN ACCURATE SITE SURVEY TO DETERMINE FINAL DIMENSIONS FOR ALL NEW STEELWORK PRIOR TO FABRICATION. THE SURVEY SHOULD HIGHLIGHT ANY EXISTING OBSTRUCTIONS, SERVICES, ETC. THAT NEED TO BE ALTERED/RELOCATED TO AVOID CLASH.
- 7. ALL BOLTS TO BE BE GRADE 8.8 IN ACCORDANCE WITH EN ISO 1461 UNLESS NOTED OTHERWISE ON THE DRAWINGS
- 8. WELD TESTS TO BE CARRIED OUT TO COMPLY WITH THE LATEST EDITION OF 'THE NATIONAL STRUCTURAL STEELWORK SPECIFICATION FOR BUILDING CONSTRUCTION'. 'FLUID' IS TO BE PROVIDED WITH COPIES OF ALL WELD TEST RESULTS
- 9. ALL STEEL BEAMS AND COLUMNS ARE TO BE FIRE PROTECTED IN ACCORDANCE WITH THE SURVEYORS DETAILS AND CURRENT BUILDING REGULATIONS. ALLOW MINIMUM 60 MINUTES, UNLESS NOTED OTHERWISE.

MASONRY NOTES:

- 1. ALL MASONRY IS DESIGNED, AND SHALL BE CONSTRUCTED IN ACCORDANCE WITH BS 5628-1:2005 PLUS ALL LATEST AMENDMENTS, INCLUDING ADEQUATE RESTRAINT AS DETAILED IN ANNEX 'D'
- REQUIRED AND SHOULD BE INCREASED AS NECESSARY TO SUIT COURSING CUT BRICKS/BLOCKS BELOW PADSTONE'S WILL NOT BE ACCEPTED
- 3. TEST CERTIFICATES CONFIRMING BRICK AND BLOCK CRUSHING STRENGTHS WILL BE REQUIRED FOR ENGINEERS APPROVAL
- 4. WALLS BELOW GROUND LEVEL ARE TO BE BUILT UP IN DENSE CONCRETE BLOCKWORK (MINIMUM 7.0KN/MM²) INNER AND OUTER LEAVES IN 1:1:3 MORTAR, WITH LEAN MIX CONCRETE CAVITY FILL UP TO 150MM BELOW GROUND LEVEL
- 5. WALLS ABOVE GROUND LEVEL TO BE BUILT UP IN 1:1:6 MORTAR (CEMENT:LIME:SAND) OR EQUIVALENT UNLESS SHOWN OTHERWISE.
- 6. WHERE BLOCKWORK WALLING BELOW GROUND IS IN EXCESS OF 900MM HIGH. THEN 215MM THICK BLOCKWORK IS TO BE ADOPTED, USING BLOCK LAID FLAT AND COURSED AT 225MM VERTICAL CENTERS BACKFILLING IS TO BE CARRIED OUT EQUALLY EITHER SIDE OF THE WALLING AND IS TO BE OF AN APPROVED, WELL GRADED, GRANULAR MATERIAL
- 7. MINIMUM BLOCKWORK STRENGTH TO BE 7.0N/MM², UNLESS STATED OTHERWISE
- 8. CONTRACTOR TO OBTAIN CONFIRMATION FROM MANUFACTURERS CONCERNING SUITABILITY OF BLOCKS AND BRICKS FOR USE BELOW DPC.
- 9. WALL TIES TO BE STAINLESS STEEL STAFIX RT2 AT 450CRS VERTICALLY AND 900CRS HORIZONTALLY (STAGGERED). TIES TO BE POSITIONED AT 225CRS VERTICALLY AROUND ALL OPENINGS.

TIMBER NOTES:

- GALVANISED STEEL STRAPS TO BE PROVIDED AT NOT GREATER THAN 1000MM CENTERS BETWEEN TIMBER AND WALLS AND OR STEELWORK, COMPLETE WITH SOLID BLOCKING.
- 2. ALL TIMBER TO BE MINIMUM STRENGTH CLASS C16 UNLESS NOTED OTHERWISE.
- 3. ALL TIMBERS PROJECTING INTO CAVITY OF CAVITY WALL CONSTRUCTION TO HAVE ENDS LIBERALLY COATED IN 'WOLMANOL' OR SIMILAR APPROVED GRAIN PRESERVATIVE.
- 4. ALL TIMBER TO BE REGULARISED AND SUPPLIED AT A MOISTURE CONTENT AVERAGE NOT EXCEEDING 18%.
- 5. ALL CONNECTORS, BOLTS AND WASHERS TO BE GALVANISED
- 6. ALL DIMENSIONS AND BEARING POINTS OF THE TRUSSES ARE TO BE CHECKED PRIOR TO FABRICATION.
- 7. ALL ROOF BRACING IS TO THE DESIGN OF THE SPECIALIST SUPPLIER. HOWEVER, ALL ROOF BRACING MEMBERS ARE TO BE AT LEAST 97X22, GRADE C16 AND ARE TO BE NAILED TO EVERY TRUSSED RAFTER THEY CROSS WITH 2NO. 3.35MM Ø X 65MM LONG GALVANISED ROUND WIRE NAILS. WHERE BRACING MEMBERS ARE PROVIDED IN TWO PIECES THE ARE TO BE LAP JOINTED OVER AT LEAST TWO TRUSSED RAFTERS AND NAILED AS ABOVE.

TIMBER LINTEL SCHEDULE:

OPENINGS UP TO 1100mm - 150x100mm C16 LINTEL OPENINGS UP TO 1900mm - 200x100mm C16 LINTEL

CONSULT WITH STRUCTURAL ENGINEER IF LARGER OPENINGS REQUIRED IN STUD WALL.

CONSTRUCTION (DESIGN AND MANAGEMENT REGULATIONS NOTES

ALL WORKS AND SITE PROCEDURES MUST BE IN KEEPING WITH THE LATEST VERSION OF THE 'CDM REGULATIONS 2015' AND A PRINCIPAL DESIGNER IS TO BE APPOINTED BY THE CLIENT TO MANAGE AND COORDINATE HEALTH AND SAFETY MATTERS ACCORDINGLY

- **TEMPORARY WORKS AS APPLICABLE**
- DEMOLITION
- TEMPORARY SUPPORTS
- STANDARD

STEEL BEAMS DEAD LOAD

STEEL BEAMS IMPOSED LOAD

DEMOLITION

THE DEMOLITION WORKS ARE TO BE CARRIED OUT WITH GREAT CARE. IF AT ANY TIME THE CONTRACTOR IS UNSURE IF UNPROPPED STRUCTURAL MEMBERS ARE TAKING SUPPORT OFF CONSTRUCTION PROPOSED TO BE DEMOLISHED, DEMOLITION WORK MUST CEASE IMMEDIATELY AND THE CONTRACTOR IS TO OBTAIN FURTHER ADVICE FROM ENGINEER PRIOR TO CONTINUING.

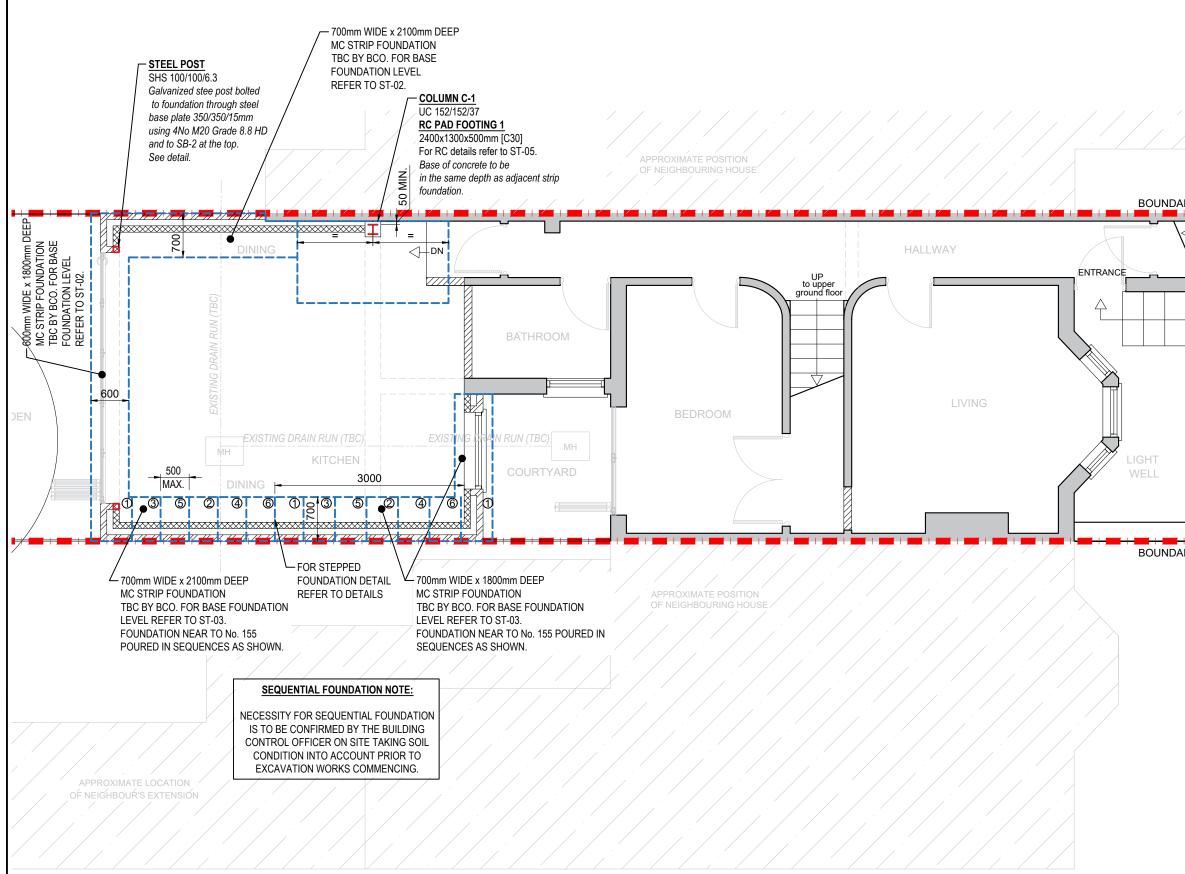
DEMOLITION WORK OTHER THAN THAT INDICATED ON ENGINEERING/THE ARCHITECTS' DRAWINGS IS NOT PERMITTED. IF THE CONTRACTOR BELIEVES THAT ADDITIONAL DEMOLITION TO THAT SHOWN ON ENGINEERING/THE ARCHITECTS' DRAWINGS IS NECESSARY. THEN FURTHER INSTRUCTIONS ARE TO BE SOUGHT FROM ENGINEER AND THE ARCHITECT PRIOR TO COMMENCING THIS ADDITIONAL DEMOLITION WORK.

THE CONTRACTOR IS TO PRODUCE A METHOD STATEMENT FOR DEMOLITION WORKS AND THIS METHOD STATEMENT IS TO BE SUBMITTED TO THE PRINCIPAL DESIGNER FOR COMMENT NOT LESS THAN 2 WEEKS PRIOR TO COMMENCING THE DEMOLITION WORKS.

FOR THE INDICATIVE POSITIONS OF EXISTING BURIED SERVICES REFERENCE IS TO BE MADE TO THE ARCHITECTS. DRAWINGS. THE ACCURACY OF THIS INFORMATION CANNOT BE GUARANTEED, AND THEREFORE IT IS THE CONTRACTOR'S RESPONSIBILITY TO ESTABLISH THE POSITIONS AND DEPTHS OF ALL UNDERGROUND SERVICES (INCLUDING THOSE NOT SHOWN ON ENGINEERING DRAWINGS) PRIOR TO THE WORKS COMMENCING. THE CONTRACTOR IS TO ALSO NOTE ANY OVERHEAD CABLES ETC. THAT MAY PRESENT A HAZARD DURING THE WORKS.

EXCAVATION IS TO PROCEED WITH GREAT CARE. AS EXCAVATION PROCEEDS THE CONTRACTOR IS TO MAINTAIN VIGILANCE FOR GROUND CONDITIONS WHICH MAY AFFECT THE STABILITY OF THE EXCAVATIONS, AND THE SAFETY OF OPERATIVES. (E.G WEAK/SOFT SOILS, WATER TABLE, TOXIC SUBSTANCES/GASES BURIED SERVICES ETC,) ADEQUATE SUPPORT TO BE PROVIDED TO SIDES OF EXCAVATIONS AS NECESSARY.

- EXISTING SERVICES
- SOIL CONDITIONS


THE CONTRACTOR IS ENTIRELY RESPONSIBLE FOR MAINTAINING THE STABILITY OF ALL EXISTING BUILDINGS AND STRUCTURES WITHIN, AND ADJACENT TO, THE WORKS, FROM THE DATE OF POSSESSION OF THE SITE UNTIL PRACTICAL COMPLETION OF THE WORKS, THE DESIGN, INSTALLATION (INCLUDING SEQUENCE). MAINTENANCE AND REMOVAL (INCLUDING SEQUENCE) OF THE TEMPORARY WORKS IS ENTIRELY THE RESPONSIBILITY OF THE CONTRACTOR. IN ADDITION TO THE SUPPORT OF THE VERTICAL LOADS, DUE REGARD SHALL BE GIVEN TO THE OVERALL LATERAL STABILITY OF THE STRUCTURES AND THE LATERAL STABILITY OF WALLS COLUMNS AND PIERS. ESPECIALLY WHERE ADJACENT EXISTING FLOORS AND ROOFS ARE TO BE DEMOLISHED. THE TEMPORARY SUPPORT SYSTEMS ARE TO BE ERECTED OFF A FOUNDATION/SPREADER SYSTEM ADEQUATE FOR THE VERTICAL AND HORIZONTAL LOADS REQUIRED TO BE SUPPORTED. THE DESIGN OF THE TEMPORARY WORKS IS TO BE UNDERTAKEN BY A COMPETENT PERSON. THE CONTRACTOR IS TO ENSURE THAT ALL EXISTING CONSTRUCTION IS ADEQUATELY SUPPORTED PRIOR TO COMMENCING DEMOLITION WORKS. IF IN DOUBT ENGINEER TO BE CONSULTED PRIOR TO COMMENCING

BEFORE COMMENCING REMOVAL OF TEMPORARY SUPPORTS THE CONTRACTOR IS TO COMPLETE ERECTION AND CONNECTION OF THE NEW PERMANENT SUPPORTING STRUCTURE. THE CONTRACTOR IS TO ENSURE THAT THE TEMPORARII Y PROPPED STRUCTURE IS ADEQUATELY SUPPORTED ON THE NEW PERMANENT WORKS PRIOR TO REMOVAL OF ANY TEMPORARY SUPPORTS. THE CONTRACTOR IS TO ENSURE THAT ALL PARTS OF THE NEW SUPPORTING STRUCTURE HAVE GAINED ADEQUATE STRENGTH PRIOR TO REMOVING

THE LOADINGS FOR THE TEMPORARY WORKS DESIGN ARE GIVEN BELOW. AND ON THE DRAWINGS AS APPROPRIATE. NOTE: ALL LOADS ARE UNFACTORED. THE TEMPORARY WORKS DESIGNER MUST MULTIPLY THESE LOADS BY THE APPROPRIATE ULTIMATE LOAD FACTORS AS GIVEN IN THE RELEVANT DESIGN

- = 40 kN/m
- = 15kN/m

Desig	n Tean	n			
342 Clo Londoi SW9 9/		Road			
tel: 020) 7242 53	353			
CLIENT:					
ARCHITECT:	Design 342 Clar London SW9 9A	oham Roc	ıd		
SITE:					
TITLE:					
SCALE AT A3:		DATE:	DRAWN:	CHECKED:	
PROJECT NO:		DRAWING NO:	•	REVISION:	

FOUNDATION LAYOUT (SCALE: NOT TO SCALE)

> FOUNDATION NOTE: BASE OF ALL FOUNDATIONS TO BE 200mm MIN. BELOW BOTTOM OF SEWAGE PIPES WITHIN 600mm FROM FACE OF SEWAGE PIPES.

SSL NOTE: ALL SSL LEVELS MUST BE REVIEWED AND CONFIRMED BETWEEN THE CLIENT, ARCHITECTS AND CONTRACTOR PRIOR TO WORKS COMMENCING. SETTING OUT NOTE: ALL SETTING & LEVELS TO BE CONFIRMED BETWEEN THE CLIENT, ARCHITECTS AND CONTRACTOR PRIOR TO COMMENCING FABRICATION.

						1
DUNDARY LINE No. 159	 read in drawing drawing drawing? The dra and rep be scal Refer to dimensis before Unless and all The infiguaran must be The Contempor mainten times. All part client The condifference conditi The Condiguaran times. 	uctural sp conjunction gs, the start gs and an awings with oresent de ed from d o the Archo- ions shou- fabrication noted oth levels are ormation of teed as dir e used for intractor is any works nance and y wall away ntractor of notes betw ions to the partactor er of any	on with all rele andard notes th y other relevan thin this docum sign intent onl rawings contai litectural drawi lid be checked a nad ordering enwise, all dim in metres fror within this docu imensionally e setting out an s responsible f , and is also re d stability of the ards are entire (or Client) mu ween the stru- te Structural F (or Client) mu s design chan fication befor STANDS EX TO REMAIN STANDS WA STANDS NE	nin this docum vant architectu- nat are contain nt project inform nent are indica ly. No dimensi- nined within this ings for all dim of materials. nensions are in m the site datu ument cannot acat. Figured of d detailing. for the design of e existing build ly the respons net report any ctural drawing	Iral ed on the mation. tive only, ons are to a document. ensions. All Contractor millimetres m. be timensions of all the safe ling/s at all ibility of the gs and site Structural d affect the nences.	IN DOUBT? ASK
			STANDS NE IN 1:1:6 MOF STANDS NE STUDWORK STANDS DI FLOOR JOIS	W 7N/mm² BL RTAR (U.N.O.) W TIMBER C. RECTION OF	OCKWORK	
			TENDER		BY: DATE:	
				R TENDE	R	
		0 7242 50	353			
	ARCHITECT:	<u> </u>	-			
	SITE:	Design 342 Cla London SW9 9A.	pham Road			
	TITLE:	CPO		OR PLAN		X
REQUIREMENT FOR LOAD BEARING WALLS TO BE	00115		DATION	LAYOUT	0050000	IN DOUBT? ASK
CONFIRMED BY CONTRACTOR OR BCO ON SITE	SCALE AT A3: PROJECT NO:		DATE: DRAWING NO:	DRAWN:	CHECKED: REVISION:	IN DOU

